Solve for x
x=\frac{\sqrt{78}}{6}+\frac{3}{2}\approx 2.971960144
x=-\frac{\sqrt{78}}{6}+\frac{3}{2}\approx 0.028039856
Graph
Share
Copied to clipboard
\left(1800-600x\right)x=50
Use the distributive property to multiply 90-30x by 20.
1800x-600x^{2}=50
Use the distributive property to multiply 1800-600x by x.
1800x-600x^{2}-50=0
Subtract 50 from both sides.
-600x^{2}+1800x-50=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1800±\sqrt{1800^{2}-4\left(-600\right)\left(-50\right)}}{2\left(-600\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -600 for a, 1800 for b, and -50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1800±\sqrt{3240000-4\left(-600\right)\left(-50\right)}}{2\left(-600\right)}
Square 1800.
x=\frac{-1800±\sqrt{3240000+2400\left(-50\right)}}{2\left(-600\right)}
Multiply -4 times -600.
x=\frac{-1800±\sqrt{3240000-120000}}{2\left(-600\right)}
Multiply 2400 times -50.
x=\frac{-1800±\sqrt{3120000}}{2\left(-600\right)}
Add 3240000 to -120000.
x=\frac{-1800±200\sqrt{78}}{2\left(-600\right)}
Take the square root of 3120000.
x=\frac{-1800±200\sqrt{78}}{-1200}
Multiply 2 times -600.
x=\frac{200\sqrt{78}-1800}{-1200}
Now solve the equation x=\frac{-1800±200\sqrt{78}}{-1200} when ± is plus. Add -1800 to 200\sqrt{78}.
x=-\frac{\sqrt{78}}{6}+\frac{3}{2}
Divide -1800+200\sqrt{78} by -1200.
x=\frac{-200\sqrt{78}-1800}{-1200}
Now solve the equation x=\frac{-1800±200\sqrt{78}}{-1200} when ± is minus. Subtract 200\sqrt{78} from -1800.
x=\frac{\sqrt{78}}{6}+\frac{3}{2}
Divide -1800-200\sqrt{78} by -1200.
x=-\frac{\sqrt{78}}{6}+\frac{3}{2} x=\frac{\sqrt{78}}{6}+\frac{3}{2}
The equation is now solved.
\left(1800-600x\right)x=50
Use the distributive property to multiply 90-30x by 20.
1800x-600x^{2}=50
Use the distributive property to multiply 1800-600x by x.
-600x^{2}+1800x=50
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-600x^{2}+1800x}{-600}=\frac{50}{-600}
Divide both sides by -600.
x^{2}+\frac{1800}{-600}x=\frac{50}{-600}
Dividing by -600 undoes the multiplication by -600.
x^{2}-3x=\frac{50}{-600}
Divide 1800 by -600.
x^{2}-3x=-\frac{1}{12}
Reduce the fraction \frac{50}{-600} to lowest terms by extracting and canceling out 50.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{1}{12}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=-\frac{1}{12}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{13}{6}
Add -\frac{1}{12} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=\frac{13}{6}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{13}{6}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{78}}{6} x-\frac{3}{2}=-\frac{\sqrt{78}}{6}
Simplify.
x=\frac{\sqrt{78}}{6}+\frac{3}{2} x=-\frac{\sqrt{78}}{6}+\frac{3}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}