Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(36-4x\right)x=16
Use the distributive property to multiply 9-x by 4.
36x-4x^{2}=16
Use the distributive property to multiply 36-4x by x.
36x-4x^{2}-16=0
Subtract 16 from both sides.
-4x^{2}+36x-16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-36±\sqrt{36^{2}-4\left(-4\right)\left(-16\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 36 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-36±\sqrt{1296-4\left(-4\right)\left(-16\right)}}{2\left(-4\right)}
Square 36.
x=\frac{-36±\sqrt{1296+16\left(-16\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-36±\sqrt{1296-256}}{2\left(-4\right)}
Multiply 16 times -16.
x=\frac{-36±\sqrt{1040}}{2\left(-4\right)}
Add 1296 to -256.
x=\frac{-36±4\sqrt{65}}{2\left(-4\right)}
Take the square root of 1040.
x=\frac{-36±4\sqrt{65}}{-8}
Multiply 2 times -4.
x=\frac{4\sqrt{65}-36}{-8}
Now solve the equation x=\frac{-36±4\sqrt{65}}{-8} when ± is plus. Add -36 to 4\sqrt{65}.
x=\frac{9-\sqrt{65}}{2}
Divide -36+4\sqrt{65} by -8.
x=\frac{-4\sqrt{65}-36}{-8}
Now solve the equation x=\frac{-36±4\sqrt{65}}{-8} when ± is minus. Subtract 4\sqrt{65} from -36.
x=\frac{\sqrt{65}+9}{2}
Divide -36-4\sqrt{65} by -8.
x=\frac{9-\sqrt{65}}{2} x=\frac{\sqrt{65}+9}{2}
The equation is now solved.
\left(36-4x\right)x=16
Use the distributive property to multiply 9-x by 4.
36x-4x^{2}=16
Use the distributive property to multiply 36-4x by x.
-4x^{2}+36x=16
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+36x}{-4}=\frac{16}{-4}
Divide both sides by -4.
x^{2}+\frac{36}{-4}x=\frac{16}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-9x=\frac{16}{-4}
Divide 36 by -4.
x^{2}-9x=-4
Divide 16 by -4.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-4+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=-4+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=\frac{65}{4}
Add -4 to \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{65}{4}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{65}{4}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{\sqrt{65}}{2} x-\frac{9}{2}=-\frac{\sqrt{65}}{2}
Simplify.
x=\frac{\sqrt{65}+9}{2} x=\frac{9-\sqrt{65}}{2}
Add \frac{9}{2} to both sides of the equation.