Solve for x
x=2\sqrt{3}+6\approx 9.464101615
x=6-2\sqrt{3}\approx 2.535898385
Graph
Share
Copied to clipboard
64-24x+2x^{2}=16
Use the distributive property to multiply 8-x by 8-2x and combine like terms.
64-24x+2x^{2}-16=0
Subtract 16 from both sides.
48-24x+2x^{2}=0
Subtract 16 from 64 to get 48.
2x^{2}-24x+48=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 2\times 48}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -24 for b, and 48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 2\times 48}}{2\times 2}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-8\times 48}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-24\right)±\sqrt{576-384}}{2\times 2}
Multiply -8 times 48.
x=\frac{-\left(-24\right)±\sqrt{192}}{2\times 2}
Add 576 to -384.
x=\frac{-\left(-24\right)±8\sqrt{3}}{2\times 2}
Take the square root of 192.
x=\frac{24±8\sqrt{3}}{2\times 2}
The opposite of -24 is 24.
x=\frac{24±8\sqrt{3}}{4}
Multiply 2 times 2.
x=\frac{8\sqrt{3}+24}{4}
Now solve the equation x=\frac{24±8\sqrt{3}}{4} when ± is plus. Add 24 to 8\sqrt{3}.
x=2\sqrt{3}+6
Divide 24+8\sqrt{3} by 4.
x=\frac{24-8\sqrt{3}}{4}
Now solve the equation x=\frac{24±8\sqrt{3}}{4} when ± is minus. Subtract 8\sqrt{3} from 24.
x=6-2\sqrt{3}
Divide 24-8\sqrt{3} by 4.
x=2\sqrt{3}+6 x=6-2\sqrt{3}
The equation is now solved.
64-24x+2x^{2}=16
Use the distributive property to multiply 8-x by 8-2x and combine like terms.
-24x+2x^{2}=16-64
Subtract 64 from both sides.
-24x+2x^{2}=-48
Subtract 64 from 16 to get -48.
2x^{2}-24x=-48
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-24x}{2}=-\frac{48}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{24}{2}\right)x=-\frac{48}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-12x=-\frac{48}{2}
Divide -24 by 2.
x^{2}-12x=-24
Divide -48 by 2.
x^{2}-12x+\left(-6\right)^{2}=-24+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=-24+36
Square -6.
x^{2}-12x+36=12
Add -24 to 36.
\left(x-6\right)^{2}=12
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{12}
Take the square root of both sides of the equation.
x-6=2\sqrt{3} x-6=-2\sqrt{3}
Simplify.
x=2\sqrt{3}+6 x=6-2\sqrt{3}
Add 6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}