Evaluate
\frac{29}{6}\approx 4.833333333
Factor
\frac{29}{2 \cdot 3} = 4\frac{5}{6} = 4.833333333333333
Share
Copied to clipboard
\frac{24+2}{3}-\frac{4\times 2+1}{2}+\frac{5\times 4+3}{4}-\frac{1\times 3+1}{3}-\left(\frac{3\times 6+1}{6}+\frac{2\times 4+1}{4}-\frac{1\times 3+2}{3}\right)
Multiply 8 and 3 to get 24.
\frac{26}{3}-\frac{4\times 2+1}{2}+\frac{5\times 4+3}{4}-\frac{1\times 3+1}{3}-\left(\frac{3\times 6+1}{6}+\frac{2\times 4+1}{4}-\frac{1\times 3+2}{3}\right)
Add 24 and 2 to get 26.
\frac{26}{3}-\frac{8+1}{2}+\frac{5\times 4+3}{4}-\frac{1\times 3+1}{3}-\left(\frac{3\times 6+1}{6}+\frac{2\times 4+1}{4}-\frac{1\times 3+2}{3}\right)
Multiply 4 and 2 to get 8.
\frac{26}{3}-\frac{9}{2}+\frac{5\times 4+3}{4}-\frac{1\times 3+1}{3}-\left(\frac{3\times 6+1}{6}+\frac{2\times 4+1}{4}-\frac{1\times 3+2}{3}\right)
Add 8 and 1 to get 9.
\frac{52}{6}-\frac{27}{6}+\frac{5\times 4+3}{4}-\frac{1\times 3+1}{3}-\left(\frac{3\times 6+1}{6}+\frac{2\times 4+1}{4}-\frac{1\times 3+2}{3}\right)
Least common multiple of 3 and 2 is 6. Convert \frac{26}{3} and \frac{9}{2} to fractions with denominator 6.
\frac{52-27}{6}+\frac{5\times 4+3}{4}-\frac{1\times 3+1}{3}-\left(\frac{3\times 6+1}{6}+\frac{2\times 4+1}{4}-\frac{1\times 3+2}{3}\right)
Since \frac{52}{6} and \frac{27}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{25}{6}+\frac{5\times 4+3}{4}-\frac{1\times 3+1}{3}-\left(\frac{3\times 6+1}{6}+\frac{2\times 4+1}{4}-\frac{1\times 3+2}{3}\right)
Subtract 27 from 52 to get 25.
\frac{25}{6}+\frac{20+3}{4}-\frac{1\times 3+1}{3}-\left(\frac{3\times 6+1}{6}+\frac{2\times 4+1}{4}-\frac{1\times 3+2}{3}\right)
Multiply 5 and 4 to get 20.
\frac{25}{6}+\frac{23}{4}-\frac{1\times 3+1}{3}-\left(\frac{3\times 6+1}{6}+\frac{2\times 4+1}{4}-\frac{1\times 3+2}{3}\right)
Add 20 and 3 to get 23.
\frac{50}{12}+\frac{69}{12}-\frac{1\times 3+1}{3}-\left(\frac{3\times 6+1}{6}+\frac{2\times 4+1}{4}-\frac{1\times 3+2}{3}\right)
Least common multiple of 6 and 4 is 12. Convert \frac{25}{6} and \frac{23}{4} to fractions with denominator 12.
\frac{50+69}{12}-\frac{1\times 3+1}{3}-\left(\frac{3\times 6+1}{6}+\frac{2\times 4+1}{4}-\frac{1\times 3+2}{3}\right)
Since \frac{50}{12} and \frac{69}{12} have the same denominator, add them by adding their numerators.
\frac{119}{12}-\frac{1\times 3+1}{3}-\left(\frac{3\times 6+1}{6}+\frac{2\times 4+1}{4}-\frac{1\times 3+2}{3}\right)
Add 50 and 69 to get 119.
\frac{119}{12}-\frac{3+1}{3}-\left(\frac{3\times 6+1}{6}+\frac{2\times 4+1}{4}-\frac{1\times 3+2}{3}\right)
Multiply 1 and 3 to get 3.
\frac{119}{12}-\frac{4}{3}-\left(\frac{3\times 6+1}{6}+\frac{2\times 4+1}{4}-\frac{1\times 3+2}{3}\right)
Add 3 and 1 to get 4.
\frac{119}{12}-\frac{16}{12}-\left(\frac{3\times 6+1}{6}+\frac{2\times 4+1}{4}-\frac{1\times 3+2}{3}\right)
Least common multiple of 12 and 3 is 12. Convert \frac{119}{12} and \frac{4}{3} to fractions with denominator 12.
\frac{119-16}{12}-\left(\frac{3\times 6+1}{6}+\frac{2\times 4+1}{4}-\frac{1\times 3+2}{3}\right)
Since \frac{119}{12} and \frac{16}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{103}{12}-\left(\frac{3\times 6+1}{6}+\frac{2\times 4+1}{4}-\frac{1\times 3+2}{3}\right)
Subtract 16 from 119 to get 103.
\frac{103}{12}-\left(\frac{18+1}{6}+\frac{2\times 4+1}{4}-\frac{1\times 3+2}{3}\right)
Multiply 3 and 6 to get 18.
\frac{103}{12}-\left(\frac{19}{6}+\frac{2\times 4+1}{4}-\frac{1\times 3+2}{3}\right)
Add 18 and 1 to get 19.
\frac{103}{12}-\left(\frac{19}{6}+\frac{8+1}{4}-\frac{1\times 3+2}{3}\right)
Multiply 2 and 4 to get 8.
\frac{103}{12}-\left(\frac{19}{6}+\frac{9}{4}-\frac{1\times 3+2}{3}\right)
Add 8 and 1 to get 9.
\frac{103}{12}-\left(\frac{38}{12}+\frac{27}{12}-\frac{1\times 3+2}{3}\right)
Least common multiple of 6 and 4 is 12. Convert \frac{19}{6} and \frac{9}{4} to fractions with denominator 12.
\frac{103}{12}-\left(\frac{38+27}{12}-\frac{1\times 3+2}{3}\right)
Since \frac{38}{12} and \frac{27}{12} have the same denominator, add them by adding their numerators.
\frac{103}{12}-\left(\frac{65}{12}-\frac{1\times 3+2}{3}\right)
Add 38 and 27 to get 65.
\frac{103}{12}-\left(\frac{65}{12}-\frac{3+2}{3}\right)
Multiply 1 and 3 to get 3.
\frac{103}{12}-\left(\frac{65}{12}-\frac{5}{3}\right)
Add 3 and 2 to get 5.
\frac{103}{12}-\left(\frac{65}{12}-\frac{20}{12}\right)
Least common multiple of 12 and 3 is 12. Convert \frac{65}{12} and \frac{5}{3} to fractions with denominator 12.
\frac{103}{12}-\frac{65-20}{12}
Since \frac{65}{12} and \frac{20}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{103}{12}-\frac{45}{12}
Subtract 20 from 65 to get 45.
\frac{103-45}{12}
Since \frac{103}{12} and \frac{45}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{58}{12}
Subtract 45 from 103 to get 58.
\frac{29}{6}
Reduce the fraction \frac{58}{12} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}