Verify
false
Share
Copied to clipboard
7\times 10^{-12}\times 7=4.9\times 10^{-13}
To multiply powers of the same base, add their exponents. Add -6 and -6 to get -12.
7\times \frac{1}{1000000000000}\times 7=4.9\times 10^{-13}
Calculate 10 to the power of -12 and get \frac{1}{1000000000000}.
\frac{7}{1000000000000}\times 7=4.9\times 10^{-13}
Multiply 7 and \frac{1}{1000000000000} to get \frac{7}{1000000000000}.
\frac{49}{1000000000000}=4.9\times 10^{-13}
Multiply \frac{7}{1000000000000} and 7 to get \frac{49}{1000000000000}.
\frac{49}{1000000000000}=4.9\times \frac{1}{10000000000000}
Calculate 10 to the power of -13 and get \frac{1}{10000000000000}.
\frac{49}{1000000000000}=\frac{49}{100000000000000}
Multiply 4.9 and \frac{1}{10000000000000} to get \frac{49}{100000000000000}.
\frac{4900}{100000000000000}=\frac{49}{100000000000000}
Least common multiple of 1000000000000 and 100000000000000 is 100000000000000. Convert \frac{49}{1000000000000} and \frac{49}{100000000000000} to fractions with denominator 100000000000000.
\text{false}
Compare \frac{4900}{100000000000000} and \frac{49}{100000000000000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}