Evaluate
\sqrt{2}\left(\sqrt{6}+15\right)\approx 24.677305051
Share
Copied to clipboard
\frac{7\times 3\sqrt{6}-3\sqrt{24}+6}{\sqrt{3}}
Factor 54=3^{2}\times 6. Rewrite the square root of the product \sqrt{3^{2}\times 6} as the product of square roots \sqrt{3^{2}}\sqrt{6}. Take the square root of 3^{2}.
\frac{21\sqrt{6}-3\sqrt{24}+6}{\sqrt{3}}
Multiply 7 and 3 to get 21.
\frac{21\sqrt{6}-3\times 2\sqrt{6}+6}{\sqrt{3}}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\frac{21\sqrt{6}-6\sqrt{6}+6}{\sqrt{3}}
Multiply -3 and 2 to get -6.
\frac{15\sqrt{6}+6}{\sqrt{3}}
Combine 21\sqrt{6} and -6\sqrt{6} to get 15\sqrt{6}.
\frac{\left(15\sqrt{6}+6\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{15\sqrt{6}+6}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(15\sqrt{6}+6\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{15\sqrt{6}\sqrt{3}+6\sqrt{3}}{3}
Use the distributive property to multiply 15\sqrt{6}+6 by \sqrt{3}.
\frac{15\sqrt{3}\sqrt{2}\sqrt{3}+6\sqrt{3}}{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{15\times 3\sqrt{2}+6\sqrt{3}}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{45\sqrt{2}+6\sqrt{3}}{3}
Multiply 15 and 3 to get 45.
15\sqrt{2}+2\sqrt{3}
Divide each term of 45\sqrt{2}+6\sqrt{3} by 3 to get 15\sqrt{2}+2\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}