Solve for x
x=\frac{1}{6}\approx 0.166666667
x = \frac{11}{3} = 3\frac{2}{3} \approx 3.666666667
Graph
Share
Copied to clipboard
12x^{2}+40x-7=\left(4-5x\right)\left(1-6x\right)
Use the distributive property to multiply 6x-1 by 2x+7 and combine like terms.
12x^{2}+40x-7=4-29x+30x^{2}
Use the distributive property to multiply 4-5x by 1-6x and combine like terms.
12x^{2}+40x-7-4=-29x+30x^{2}
Subtract 4 from both sides.
12x^{2}+40x-11=-29x+30x^{2}
Subtract 4 from -7 to get -11.
12x^{2}+40x-11+29x=30x^{2}
Add 29x to both sides.
12x^{2}+69x-11=30x^{2}
Combine 40x and 29x to get 69x.
12x^{2}+69x-11-30x^{2}=0
Subtract 30x^{2} from both sides.
-18x^{2}+69x-11=0
Combine 12x^{2} and -30x^{2} to get -18x^{2}.
x=\frac{-69±\sqrt{69^{2}-4\left(-18\right)\left(-11\right)}}{2\left(-18\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -18 for a, 69 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-69±\sqrt{4761-4\left(-18\right)\left(-11\right)}}{2\left(-18\right)}
Square 69.
x=\frac{-69±\sqrt{4761+72\left(-11\right)}}{2\left(-18\right)}
Multiply -4 times -18.
x=\frac{-69±\sqrt{4761-792}}{2\left(-18\right)}
Multiply 72 times -11.
x=\frac{-69±\sqrt{3969}}{2\left(-18\right)}
Add 4761 to -792.
x=\frac{-69±63}{2\left(-18\right)}
Take the square root of 3969.
x=\frac{-69±63}{-36}
Multiply 2 times -18.
x=-\frac{6}{-36}
Now solve the equation x=\frac{-69±63}{-36} when ± is plus. Add -69 to 63.
x=\frac{1}{6}
Reduce the fraction \frac{-6}{-36} to lowest terms by extracting and canceling out 6.
x=-\frac{132}{-36}
Now solve the equation x=\frac{-69±63}{-36} when ± is minus. Subtract 63 from -69.
x=\frac{11}{3}
Reduce the fraction \frac{-132}{-36} to lowest terms by extracting and canceling out 12.
x=\frac{1}{6} x=\frac{11}{3}
The equation is now solved.
12x^{2}+40x-7=\left(4-5x\right)\left(1-6x\right)
Use the distributive property to multiply 6x-1 by 2x+7 and combine like terms.
12x^{2}+40x-7=4-29x+30x^{2}
Use the distributive property to multiply 4-5x by 1-6x and combine like terms.
12x^{2}+40x-7+29x=4+30x^{2}
Add 29x to both sides.
12x^{2}+69x-7=4+30x^{2}
Combine 40x and 29x to get 69x.
12x^{2}+69x-7-30x^{2}=4
Subtract 30x^{2} from both sides.
-18x^{2}+69x-7=4
Combine 12x^{2} and -30x^{2} to get -18x^{2}.
-18x^{2}+69x=4+7
Add 7 to both sides.
-18x^{2}+69x=11
Add 4 and 7 to get 11.
\frac{-18x^{2}+69x}{-18}=\frac{11}{-18}
Divide both sides by -18.
x^{2}+\frac{69}{-18}x=\frac{11}{-18}
Dividing by -18 undoes the multiplication by -18.
x^{2}-\frac{23}{6}x=\frac{11}{-18}
Reduce the fraction \frac{69}{-18} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{23}{6}x=-\frac{11}{18}
Divide 11 by -18.
x^{2}-\frac{23}{6}x+\left(-\frac{23}{12}\right)^{2}=-\frac{11}{18}+\left(-\frac{23}{12}\right)^{2}
Divide -\frac{23}{6}, the coefficient of the x term, by 2 to get -\frac{23}{12}. Then add the square of -\frac{23}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{23}{6}x+\frac{529}{144}=-\frac{11}{18}+\frac{529}{144}
Square -\frac{23}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{23}{6}x+\frac{529}{144}=\frac{49}{16}
Add -\frac{11}{18} to \frac{529}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{23}{12}\right)^{2}=\frac{49}{16}
Factor x^{2}-\frac{23}{6}x+\frac{529}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{23}{12}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
x-\frac{23}{12}=\frac{7}{4} x-\frac{23}{12}=-\frac{7}{4}
Simplify.
x=\frac{11}{3} x=\frac{1}{6}
Add \frac{23}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}