Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x^{2}+40x-7=\left(4-5x\right)\left(1-6x\right)
Use the distributive property to multiply 6x-1 by 2x+7 and combine like terms.
12x^{2}+40x-7=4-29x+30x^{2}
Use the distributive property to multiply 4-5x by 1-6x and combine like terms.
12x^{2}+40x-7-4=-29x+30x^{2}
Subtract 4 from both sides.
12x^{2}+40x-11=-29x+30x^{2}
Subtract 4 from -7 to get -11.
12x^{2}+40x-11+29x=30x^{2}
Add 29x to both sides.
12x^{2}+69x-11=30x^{2}
Combine 40x and 29x to get 69x.
12x^{2}+69x-11-30x^{2}=0
Subtract 30x^{2} from both sides.
-18x^{2}+69x-11=0
Combine 12x^{2} and -30x^{2} to get -18x^{2}.
x=\frac{-69±\sqrt{69^{2}-4\left(-18\right)\left(-11\right)}}{2\left(-18\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -18 for a, 69 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-69±\sqrt{4761-4\left(-18\right)\left(-11\right)}}{2\left(-18\right)}
Square 69.
x=\frac{-69±\sqrt{4761+72\left(-11\right)}}{2\left(-18\right)}
Multiply -4 times -18.
x=\frac{-69±\sqrt{4761-792}}{2\left(-18\right)}
Multiply 72 times -11.
x=\frac{-69±\sqrt{3969}}{2\left(-18\right)}
Add 4761 to -792.
x=\frac{-69±63}{2\left(-18\right)}
Take the square root of 3969.
x=\frac{-69±63}{-36}
Multiply 2 times -18.
x=-\frac{6}{-36}
Now solve the equation x=\frac{-69±63}{-36} when ± is plus. Add -69 to 63.
x=\frac{1}{6}
Reduce the fraction \frac{-6}{-36} to lowest terms by extracting and canceling out 6.
x=-\frac{132}{-36}
Now solve the equation x=\frac{-69±63}{-36} when ± is minus. Subtract 63 from -69.
x=\frac{11}{3}
Reduce the fraction \frac{-132}{-36} to lowest terms by extracting and canceling out 12.
x=\frac{1}{6} x=\frac{11}{3}
The equation is now solved.
12x^{2}+40x-7=\left(4-5x\right)\left(1-6x\right)
Use the distributive property to multiply 6x-1 by 2x+7 and combine like terms.
12x^{2}+40x-7=4-29x+30x^{2}
Use the distributive property to multiply 4-5x by 1-6x and combine like terms.
12x^{2}+40x-7+29x=4+30x^{2}
Add 29x to both sides.
12x^{2}+69x-7=4+30x^{2}
Combine 40x and 29x to get 69x.
12x^{2}+69x-7-30x^{2}=4
Subtract 30x^{2} from both sides.
-18x^{2}+69x-7=4
Combine 12x^{2} and -30x^{2} to get -18x^{2}.
-18x^{2}+69x=4+7
Add 7 to both sides.
-18x^{2}+69x=11
Add 4 and 7 to get 11.
\frac{-18x^{2}+69x}{-18}=\frac{11}{-18}
Divide both sides by -18.
x^{2}+\frac{69}{-18}x=\frac{11}{-18}
Dividing by -18 undoes the multiplication by -18.
x^{2}-\frac{23}{6}x=\frac{11}{-18}
Reduce the fraction \frac{69}{-18} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{23}{6}x=-\frac{11}{18}
Divide 11 by -18.
x^{2}-\frac{23}{6}x+\left(-\frac{23}{12}\right)^{2}=-\frac{11}{18}+\left(-\frac{23}{12}\right)^{2}
Divide -\frac{23}{6}, the coefficient of the x term, by 2 to get -\frac{23}{12}. Then add the square of -\frac{23}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{23}{6}x+\frac{529}{144}=-\frac{11}{18}+\frac{529}{144}
Square -\frac{23}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{23}{6}x+\frac{529}{144}=\frac{49}{16}
Add -\frac{11}{18} to \frac{529}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{23}{12}\right)^{2}=\frac{49}{16}
Factor x^{2}-\frac{23}{6}x+\frac{529}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{23}{12}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
x-\frac{23}{12}=\frac{7}{4} x-\frac{23}{12}=-\frac{7}{4}
Simplify.
x=\frac{11}{3} x=\frac{1}{6}
Add \frac{23}{12} to both sides of the equation.