Solve for x
x=24
x=154
Graph
Share
Copied to clipboard
66x-x^{2}=56\left(-x+66-x\right)
Use the distributive property to multiply 66-x by x.
66x-x^{2}=56\left(-x\right)+3696-56x
Use the distributive property to multiply 56 by -x+66-x.
66x-x^{2}-56\left(-x\right)=3696-56x
Subtract 56\left(-x\right) from both sides.
66x-x^{2}-56\left(-x\right)-3696=-56x
Subtract 3696 from both sides.
66x-x^{2}-56\left(-x\right)-3696+56x=0
Add 56x to both sides.
66x-x^{2}-56\left(-1\right)x-3696+56x=0
Multiply -1 and 56 to get -56.
66x-x^{2}+56x-3696+56x=0
Multiply -56 and -1 to get 56.
122x-x^{2}-3696+56x=0
Combine 66x and 56x to get 122x.
178x-x^{2}-3696=0
Combine 122x and 56x to get 178x.
-x^{2}+178x-3696=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-178±\sqrt{178^{2}-4\left(-1\right)\left(-3696\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 178 for b, and -3696 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-178±\sqrt{31684-4\left(-1\right)\left(-3696\right)}}{2\left(-1\right)}
Square 178.
x=\frac{-178±\sqrt{31684+4\left(-3696\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-178±\sqrt{31684-14784}}{2\left(-1\right)}
Multiply 4 times -3696.
x=\frac{-178±\sqrt{16900}}{2\left(-1\right)}
Add 31684 to -14784.
x=\frac{-178±130}{2\left(-1\right)}
Take the square root of 16900.
x=\frac{-178±130}{-2}
Multiply 2 times -1.
x=-\frac{48}{-2}
Now solve the equation x=\frac{-178±130}{-2} when ± is plus. Add -178 to 130.
x=24
Divide -48 by -2.
x=-\frac{308}{-2}
Now solve the equation x=\frac{-178±130}{-2} when ± is minus. Subtract 130 from -178.
x=154
Divide -308 by -2.
x=24 x=154
The equation is now solved.
66x-x^{2}=56\left(-x+66-x\right)
Use the distributive property to multiply 66-x by x.
66x-x^{2}=56\left(-x\right)+3696-56x
Use the distributive property to multiply 56 by -x+66-x.
66x-x^{2}-56\left(-x\right)=3696-56x
Subtract 56\left(-x\right) from both sides.
66x-x^{2}-56\left(-x\right)+56x=3696
Add 56x to both sides.
66x-x^{2}-56\left(-1\right)x+56x=3696
Multiply -1 and 56 to get -56.
66x-x^{2}+56x+56x=3696
Multiply -56 and -1 to get 56.
122x-x^{2}+56x=3696
Combine 66x and 56x to get 122x.
178x-x^{2}=3696
Combine 122x and 56x to get 178x.
-x^{2}+178x=3696
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+178x}{-1}=\frac{3696}{-1}
Divide both sides by -1.
x^{2}+\frac{178}{-1}x=\frac{3696}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-178x=\frac{3696}{-1}
Divide 178 by -1.
x^{2}-178x=-3696
Divide 3696 by -1.
x^{2}-178x+\left(-89\right)^{2}=-3696+\left(-89\right)^{2}
Divide -178, the coefficient of the x term, by 2 to get -89. Then add the square of -89 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-178x+7921=-3696+7921
Square -89.
x^{2}-178x+7921=4225
Add -3696 to 7921.
\left(x-89\right)^{2}=4225
Factor x^{2}-178x+7921. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-89\right)^{2}}=\sqrt{4225}
Take the square root of both sides of the equation.
x-89=65 x-89=-65
Simplify.
x=154 x=24
Add 89 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}