Solve for x
x=5\sqrt{65}-35\approx 5.311288741
x=-5\sqrt{65}-35\approx -75.311288741
Graph
Share
Copied to clipboard
6000+700x+10x^{2}=10000
Use the distributive property to multiply 600+10x by 10+x and combine like terms.
6000+700x+10x^{2}-10000=0
Subtract 10000 from both sides.
-4000+700x+10x^{2}=0
Subtract 10000 from 6000 to get -4000.
10x^{2}+700x-4000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-700±\sqrt{700^{2}-4\times 10\left(-4000\right)}}{2\times 10}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 10 for a, 700 for b, and -4000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-700±\sqrt{490000-4\times 10\left(-4000\right)}}{2\times 10}
Square 700.
x=\frac{-700±\sqrt{490000-40\left(-4000\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-700±\sqrt{490000+160000}}{2\times 10}
Multiply -40 times -4000.
x=\frac{-700±\sqrt{650000}}{2\times 10}
Add 490000 to 160000.
x=\frac{-700±100\sqrt{65}}{2\times 10}
Take the square root of 650000.
x=\frac{-700±100\sqrt{65}}{20}
Multiply 2 times 10.
x=\frac{100\sqrt{65}-700}{20}
Now solve the equation x=\frac{-700±100\sqrt{65}}{20} when ± is plus. Add -700 to 100\sqrt{65}.
x=5\sqrt{65}-35
Divide -700+100\sqrt{65} by 20.
x=\frac{-100\sqrt{65}-700}{20}
Now solve the equation x=\frac{-700±100\sqrt{65}}{20} when ± is minus. Subtract 100\sqrt{65} from -700.
x=-5\sqrt{65}-35
Divide -700-100\sqrt{65} by 20.
x=5\sqrt{65}-35 x=-5\sqrt{65}-35
The equation is now solved.
6000+700x+10x^{2}=10000
Use the distributive property to multiply 600+10x by 10+x and combine like terms.
700x+10x^{2}=10000-6000
Subtract 6000 from both sides.
700x+10x^{2}=4000
Subtract 6000 from 10000 to get 4000.
10x^{2}+700x=4000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{10x^{2}+700x}{10}=\frac{4000}{10}
Divide both sides by 10.
x^{2}+\frac{700}{10}x=\frac{4000}{10}
Dividing by 10 undoes the multiplication by 10.
x^{2}+70x=\frac{4000}{10}
Divide 700 by 10.
x^{2}+70x=400
Divide 4000 by 10.
x^{2}+70x+35^{2}=400+35^{2}
Divide 70, the coefficient of the x term, by 2 to get 35. Then add the square of 35 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+70x+1225=400+1225
Square 35.
x^{2}+70x+1225=1625
Add 400 to 1225.
\left(x+35\right)^{2}=1625
Factor x^{2}+70x+1225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+35\right)^{2}}=\sqrt{1625}
Take the square root of both sides of the equation.
x+35=5\sqrt{65} x+35=-5\sqrt{65}
Simplify.
x=5\sqrt{65}-35 x=-5\sqrt{65}-35
Subtract 35 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}