Solve for x
x=\frac{\sqrt{1234}}{30}-\frac{4}{15}\approx 0.904277871
x=-\frac{\sqrt{1234}}{30}-\frac{4}{15}\approx -1.437611205
Graph
Share
Copied to clipboard
60x^{2}+32x+180=\frac{103.2}{0.4}
Divide both sides by 0.4.
60x^{2}+32x+180=\frac{1032}{4}
Expand \frac{103.2}{0.4} by multiplying both numerator and the denominator by 10.
60x^{2}+32x+180=258
Divide 1032 by 4 to get 258.
60x^{2}+32x+180-258=0
Subtract 258 from both sides.
60x^{2}+32x-78=0
Subtract 258 from 180 to get -78.
x=\frac{-32±\sqrt{32^{2}-4\times 60\left(-78\right)}}{2\times 60}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 60 for a, 32 for b, and -78 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±\sqrt{1024-4\times 60\left(-78\right)}}{2\times 60}
Square 32.
x=\frac{-32±\sqrt{1024-240\left(-78\right)}}{2\times 60}
Multiply -4 times 60.
x=\frac{-32±\sqrt{1024+18720}}{2\times 60}
Multiply -240 times -78.
x=\frac{-32±\sqrt{19744}}{2\times 60}
Add 1024 to 18720.
x=\frac{-32±4\sqrt{1234}}{2\times 60}
Take the square root of 19744.
x=\frac{-32±4\sqrt{1234}}{120}
Multiply 2 times 60.
x=\frac{4\sqrt{1234}-32}{120}
Now solve the equation x=\frac{-32±4\sqrt{1234}}{120} when ± is plus. Add -32 to 4\sqrt{1234}.
x=\frac{\sqrt{1234}}{30}-\frac{4}{15}
Divide -32+4\sqrt{1234} by 120.
x=\frac{-4\sqrt{1234}-32}{120}
Now solve the equation x=\frac{-32±4\sqrt{1234}}{120} when ± is minus. Subtract 4\sqrt{1234} from -32.
x=-\frac{\sqrt{1234}}{30}-\frac{4}{15}
Divide -32-4\sqrt{1234} by 120.
x=\frac{\sqrt{1234}}{30}-\frac{4}{15} x=-\frac{\sqrt{1234}}{30}-\frac{4}{15}
The equation is now solved.
60x^{2}+32x+180=\frac{103.2}{0.4}
Divide both sides by 0.4.
60x^{2}+32x+180=\frac{1032}{4}
Expand \frac{103.2}{0.4} by multiplying both numerator and the denominator by 10.
60x^{2}+32x+180=258
Divide 1032 by 4 to get 258.
60x^{2}+32x=258-180
Subtract 180 from both sides.
60x^{2}+32x=78
Subtract 180 from 258 to get 78.
\frac{60x^{2}+32x}{60}=\frac{78}{60}
Divide both sides by 60.
x^{2}+\frac{32}{60}x=\frac{78}{60}
Dividing by 60 undoes the multiplication by 60.
x^{2}+\frac{8}{15}x=\frac{78}{60}
Reduce the fraction \frac{32}{60} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{8}{15}x=\frac{13}{10}
Reduce the fraction \frac{78}{60} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{8}{15}x+\left(\frac{4}{15}\right)^{2}=\frac{13}{10}+\left(\frac{4}{15}\right)^{2}
Divide \frac{8}{15}, the coefficient of the x term, by 2 to get \frac{4}{15}. Then add the square of \frac{4}{15} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{8}{15}x+\frac{16}{225}=\frac{13}{10}+\frac{16}{225}
Square \frac{4}{15} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{8}{15}x+\frac{16}{225}=\frac{617}{450}
Add \frac{13}{10} to \frac{16}{225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{4}{15}\right)^{2}=\frac{617}{450}
Factor x^{2}+\frac{8}{15}x+\frac{16}{225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{15}\right)^{2}}=\sqrt{\frac{617}{450}}
Take the square root of both sides of the equation.
x+\frac{4}{15}=\frac{\sqrt{1234}}{30} x+\frac{4}{15}=-\frac{\sqrt{1234}}{30}
Simplify.
x=\frac{\sqrt{1234}}{30}-\frac{4}{15} x=-\frac{\sqrt{1234}}{30}-\frac{4}{15}
Subtract \frac{4}{15} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}