Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

48-20x+2x^{2}=16
Use the distributive property to multiply 6-x by 8-2x and combine like terms.
48-20x+2x^{2}-16=0
Subtract 16 from both sides.
32-20x+2x^{2}=0
Subtract 16 from 48 to get 32.
2x^{2}-20x+32=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 2\times 32}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -20 for b, and 32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 2\times 32}}{2\times 2}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-8\times 32}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-20\right)±\sqrt{400-256}}{2\times 2}
Multiply -8 times 32.
x=\frac{-\left(-20\right)±\sqrt{144}}{2\times 2}
Add 400 to -256.
x=\frac{-\left(-20\right)±12}{2\times 2}
Take the square root of 144.
x=\frac{20±12}{2\times 2}
The opposite of -20 is 20.
x=\frac{20±12}{4}
Multiply 2 times 2.
x=\frac{32}{4}
Now solve the equation x=\frac{20±12}{4} when ± is plus. Add 20 to 12.
x=8
Divide 32 by 4.
x=\frac{8}{4}
Now solve the equation x=\frac{20±12}{4} when ± is minus. Subtract 12 from 20.
x=2
Divide 8 by 4.
x=8 x=2
The equation is now solved.
48-20x+2x^{2}=16
Use the distributive property to multiply 6-x by 8-2x and combine like terms.
-20x+2x^{2}=16-48
Subtract 48 from both sides.
-20x+2x^{2}=-32
Subtract 48 from 16 to get -32.
2x^{2}-20x=-32
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-20x}{2}=-\frac{32}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{20}{2}\right)x=-\frac{32}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-10x=-\frac{32}{2}
Divide -20 by 2.
x^{2}-10x=-16
Divide -32 by 2.
x^{2}-10x+\left(-5\right)^{2}=-16+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-16+25
Square -5.
x^{2}-10x+25=9
Add -16 to 25.
\left(x-5\right)^{2}=9
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x-5=3 x-5=-3
Simplify.
x=8 x=2
Add 5 to both sides of the equation.