Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(6\sqrt{15}-2\sqrt{5}\right)\left(2\sqrt{2}+2\sqrt{20}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(6\sqrt{15}-2\sqrt{5}\right)\left(2\sqrt{2}+2\times 2\sqrt{5}\right)
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\left(6\sqrt{15}-2\sqrt{5}\right)\left(2\sqrt{2}+4\sqrt{5}\right)
Multiply 2 and 2 to get 4.
12\sqrt{15}\sqrt{2}+24\sqrt{15}\sqrt{5}-4\sqrt{5}\sqrt{2}-8\left(\sqrt{5}\right)^{2}
Apply the distributive property by multiplying each term of 6\sqrt{15}-2\sqrt{5} by each term of 2\sqrt{2}+4\sqrt{5}.
12\sqrt{30}+24\sqrt{15}\sqrt{5}-4\sqrt{5}\sqrt{2}-8\left(\sqrt{5}\right)^{2}
To multiply \sqrt{15} and \sqrt{2}, multiply the numbers under the square root.
12\sqrt{30}+24\sqrt{5}\sqrt{3}\sqrt{5}-4\sqrt{5}\sqrt{2}-8\left(\sqrt{5}\right)^{2}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
12\sqrt{30}+24\times 5\sqrt{3}-4\sqrt{5}\sqrt{2}-8\left(\sqrt{5}\right)^{2}
Multiply \sqrt{5} and \sqrt{5} to get 5.
12\sqrt{30}+120\sqrt{3}-4\sqrt{5}\sqrt{2}-8\left(\sqrt{5}\right)^{2}
Multiply 24 and 5 to get 120.
12\sqrt{30}+120\sqrt{3}-4\sqrt{10}-8\left(\sqrt{5}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
12\sqrt{30}+120\sqrt{3}-4\sqrt{10}-8\times 5
The square of \sqrt{5} is 5.
12\sqrt{30}+120\sqrt{3}-4\sqrt{10}-40
Multiply -8 and 5 to get -40.