Solve for x
x=-\frac{1}{5}=-0.2
x=0
Graph
Share
Copied to clipboard
\left(5x\right)^{2}-1=-1-5x
Consider \left(5x-1\right)\left(5x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
5^{2}x^{2}-1=-1-5x
Expand \left(5x\right)^{2}.
25x^{2}-1=-1-5x
Calculate 5 to the power of 2 and get 25.
25x^{2}-1-\left(-1\right)=-5x
Subtract -1 from both sides.
25x^{2}-1+1=-5x
The opposite of -1 is 1.
25x^{2}-1+1+5x=0
Add 5x to both sides.
25x^{2}+5x=0
Add -1 and 1 to get 0.
x=\frac{-5±\sqrt{5^{2}}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, 5 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±5}{2\times 25}
Take the square root of 5^{2}.
x=\frac{-5±5}{50}
Multiply 2 times 25.
x=\frac{0}{50}
Now solve the equation x=\frac{-5±5}{50} when ± is plus. Add -5 to 5.
x=0
Divide 0 by 50.
x=-\frac{10}{50}
Now solve the equation x=\frac{-5±5}{50} when ± is minus. Subtract 5 from -5.
x=-\frac{1}{5}
Reduce the fraction \frac{-10}{50} to lowest terms by extracting and canceling out 10.
x=0 x=-\frac{1}{5}
The equation is now solved.
\left(5x\right)^{2}-1=-1-5x
Consider \left(5x-1\right)\left(5x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
5^{2}x^{2}-1=-1-5x
Expand \left(5x\right)^{2}.
25x^{2}-1=-1-5x
Calculate 5 to the power of 2 and get 25.
25x^{2}-1+5x=-1
Add 5x to both sides.
25x^{2}+5x=-1+1
Add 1 to both sides.
25x^{2}+5x=0
Add -1 and 1 to get 0.
\frac{25x^{2}+5x}{25}=\frac{0}{25}
Divide both sides by 25.
x^{2}+\frac{5}{25}x=\frac{0}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}+\frac{1}{5}x=\frac{0}{25}
Reduce the fraction \frac{5}{25} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{1}{5}x=0
Divide 0 by 25.
x^{2}+\frac{1}{5}x+\left(\frac{1}{10}\right)^{2}=\left(\frac{1}{10}\right)^{2}
Divide \frac{1}{5}, the coefficient of the x term, by 2 to get \frac{1}{10}. Then add the square of \frac{1}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{5}x+\frac{1}{100}=\frac{1}{100}
Square \frac{1}{10} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{1}{10}\right)^{2}=\frac{1}{100}
Factor x^{2}+\frac{1}{5}x+\frac{1}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{10}\right)^{2}}=\sqrt{\frac{1}{100}}
Take the square root of both sides of the equation.
x+\frac{1}{10}=\frac{1}{10} x+\frac{1}{10}=-\frac{1}{10}
Simplify.
x=0 x=-\frac{1}{5}
Subtract \frac{1}{10} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}