Solve for x
x = \frac{\sqrt{577} + 1}{16} \approx 1.563801519
x=\frac{1-\sqrt{577}}{16}\approx -1.438801519
Graph
Share
Copied to clipboard
40x^{2}-5x=90
Use the distributive property to multiply 5x by 8x-1.
40x^{2}-5x-90=0
Subtract 90 from both sides.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 40\left(-90\right)}}{2\times 40}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 40 for a, -5 for b, and -90 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 40\left(-90\right)}}{2\times 40}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-160\left(-90\right)}}{2\times 40}
Multiply -4 times 40.
x=\frac{-\left(-5\right)±\sqrt{25+14400}}{2\times 40}
Multiply -160 times -90.
x=\frac{-\left(-5\right)±\sqrt{14425}}{2\times 40}
Add 25 to 14400.
x=\frac{-\left(-5\right)±5\sqrt{577}}{2\times 40}
Take the square root of 14425.
x=\frac{5±5\sqrt{577}}{2\times 40}
The opposite of -5 is 5.
x=\frac{5±5\sqrt{577}}{80}
Multiply 2 times 40.
x=\frac{5\sqrt{577}+5}{80}
Now solve the equation x=\frac{5±5\sqrt{577}}{80} when ± is plus. Add 5 to 5\sqrt{577}.
x=\frac{\sqrt{577}+1}{16}
Divide 5+5\sqrt{577} by 80.
x=\frac{5-5\sqrt{577}}{80}
Now solve the equation x=\frac{5±5\sqrt{577}}{80} when ± is minus. Subtract 5\sqrt{577} from 5.
x=\frac{1-\sqrt{577}}{16}
Divide 5-5\sqrt{577} by 80.
x=\frac{\sqrt{577}+1}{16} x=\frac{1-\sqrt{577}}{16}
The equation is now solved.
40x^{2}-5x=90
Use the distributive property to multiply 5x by 8x-1.
\frac{40x^{2}-5x}{40}=\frac{90}{40}
Divide both sides by 40.
x^{2}+\left(-\frac{5}{40}\right)x=\frac{90}{40}
Dividing by 40 undoes the multiplication by 40.
x^{2}-\frac{1}{8}x=\frac{90}{40}
Reduce the fraction \frac{-5}{40} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{1}{8}x=\frac{9}{4}
Reduce the fraction \frac{90}{40} to lowest terms by extracting and canceling out 10.
x^{2}-\frac{1}{8}x+\left(-\frac{1}{16}\right)^{2}=\frac{9}{4}+\left(-\frac{1}{16}\right)^{2}
Divide -\frac{1}{8}, the coefficient of the x term, by 2 to get -\frac{1}{16}. Then add the square of -\frac{1}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{8}x+\frac{1}{256}=\frac{9}{4}+\frac{1}{256}
Square -\frac{1}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{8}x+\frac{1}{256}=\frac{577}{256}
Add \frac{9}{4} to \frac{1}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{16}\right)^{2}=\frac{577}{256}
Factor x^{2}-\frac{1}{8}x+\frac{1}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{16}\right)^{2}}=\sqrt{\frac{577}{256}}
Take the square root of both sides of the equation.
x-\frac{1}{16}=\frac{\sqrt{577}}{16} x-\frac{1}{16}=-\frac{\sqrt{577}}{16}
Simplify.
x=\frac{\sqrt{577}+1}{16} x=\frac{1-\sqrt{577}}{16}
Add \frac{1}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}