Solve for x
x\in \left(175-5\sqrt{1005},5\sqrt{1005}+175\right)
Graph
Share
Copied to clipboard
5\left(50-\frac{x-100}{5}\right)x-5500>0
Multiply both sides of the equation by 5. Since 5 is positive, the inequality direction remains the same.
\left(250+5\left(-\frac{x-100}{5}\right)\right)x-5500>0
Use the distributive property to multiply 5 by 50-\frac{x-100}{5}.
\left(250+\frac{-5\left(x-100\right)}{5}\right)x-5500>0
Express 5\left(-\frac{x-100}{5}\right) as a single fraction.
\left(250-\left(x-100\right)\right)x-5500>0
Cancel out 5 and 5.
\left(250-x-\left(-100\right)\right)x-5500>0
To find the opposite of x-100, find the opposite of each term.
\left(250-x+100\right)x-5500>0
The opposite of -100 is 100.
\left(350-x\right)x-5500>0
Add 250 and 100 to get 350.
350x-x^{2}-5500>0
Use the distributive property to multiply 350-x by x.
-350x+x^{2}+5500<0
Multiply the inequality by -1 to make the coefficient of the highest power in 350x-x^{2}-5500 positive. Since -1 is negative, the inequality direction is changed.
-350x+x^{2}+5500=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-350\right)±\sqrt{\left(-350\right)^{2}-4\times 1\times 5500}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -350 for b, and 5500 for c in the quadratic formula.
x=\frac{350±10\sqrt{1005}}{2}
Do the calculations.
x=5\sqrt{1005}+175 x=175-5\sqrt{1005}
Solve the equation x=\frac{350±10\sqrt{1005}}{2} when ± is plus and when ± is minus.
\left(x-\left(5\sqrt{1005}+175\right)\right)\left(x-\left(175-5\sqrt{1005}\right)\right)<0
Rewrite the inequality by using the obtained solutions.
x-\left(5\sqrt{1005}+175\right)>0 x-\left(175-5\sqrt{1005}\right)<0
For the product to be negative, x-\left(5\sqrt{1005}+175\right) and x-\left(175-5\sqrt{1005}\right) have to be of the opposite signs. Consider the case when x-\left(5\sqrt{1005}+175\right) is positive and x-\left(175-5\sqrt{1005}\right) is negative.
x\in \emptyset
This is false for any x.
x-\left(175-5\sqrt{1005}\right)>0 x-\left(5\sqrt{1005}+175\right)<0
Consider the case when x-\left(175-5\sqrt{1005}\right) is positive and x-\left(5\sqrt{1005}+175\right) is negative.
x\in \left(175-5\sqrt{1005},5\sqrt{1005}+175\right)
The solution satisfying both inequalities is x\in \left(175-5\sqrt{1005},5\sqrt{1005}+175\right).
x\in \left(175-5\sqrt{1005},5\sqrt{1005}+175\right)
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}