Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(5-3\sqrt{5}\right)\left(5-3\sqrt{5}\right)}{\left(5+3\sqrt{5}\right)\left(5-3\sqrt{5}\right)}
Rationalize the denominator of \frac{5-3\sqrt{5}}{5+3\sqrt{5}} by multiplying numerator and denominator by 5-3\sqrt{5}.
\frac{\left(5-3\sqrt{5}\right)\left(5-3\sqrt{5}\right)}{5^{2}-\left(3\sqrt{5}\right)^{2}}
Consider \left(5+3\sqrt{5}\right)\left(5-3\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-3\sqrt{5}\right)^{2}}{5^{2}-\left(3\sqrt{5}\right)^{2}}
Multiply 5-3\sqrt{5} and 5-3\sqrt{5} to get \left(5-3\sqrt{5}\right)^{2}.
\frac{25-30\sqrt{5}+9\left(\sqrt{5}\right)^{2}}{5^{2}-\left(3\sqrt{5}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-3\sqrt{5}\right)^{2}.
\frac{25-30\sqrt{5}+9\times 5}{5^{2}-\left(3\sqrt{5}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{25-30\sqrt{5}+45}{5^{2}-\left(3\sqrt{5}\right)^{2}}
Multiply 9 and 5 to get 45.
\frac{70-30\sqrt{5}}{5^{2}-\left(3\sqrt{5}\right)^{2}}
Add 25 and 45 to get 70.
\frac{70-30\sqrt{5}}{25-\left(3\sqrt{5}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{70-30\sqrt{5}}{25-3^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(3\sqrt{5}\right)^{2}.
\frac{70-30\sqrt{5}}{25-9\left(\sqrt{5}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{70-30\sqrt{5}}{25-9\times 5}
The square of \sqrt{5} is 5.
\frac{70-30\sqrt{5}}{25-45}
Multiply 9 and 5 to get 45.
\frac{70-30\sqrt{5}}{-20}
Subtract 45 from 25 to get -20.