Evaluate
\frac{3\sqrt{5}-7}{2}\approx -0.145898034
Factor
\frac{3 \sqrt{5} - 7}{2} = -0.1458980337503153
Share
Copied to clipboard
\frac{\left(5-3\sqrt{5}\right)\left(5-3\sqrt{5}\right)}{\left(5+3\sqrt{5}\right)\left(5-3\sqrt{5}\right)}
Rationalize the denominator of \frac{5-3\sqrt{5}}{5+3\sqrt{5}} by multiplying numerator and denominator by 5-3\sqrt{5}.
\frac{\left(5-3\sqrt{5}\right)\left(5-3\sqrt{5}\right)}{5^{2}-\left(3\sqrt{5}\right)^{2}}
Consider \left(5+3\sqrt{5}\right)\left(5-3\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(5-3\sqrt{5}\right)^{2}}{5^{2}-\left(3\sqrt{5}\right)^{2}}
Multiply 5-3\sqrt{5} and 5-3\sqrt{5} to get \left(5-3\sqrt{5}\right)^{2}.
\frac{25-30\sqrt{5}+9\left(\sqrt{5}\right)^{2}}{5^{2}-\left(3\sqrt{5}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-3\sqrt{5}\right)^{2}.
\frac{25-30\sqrt{5}+9\times 5}{5^{2}-\left(3\sqrt{5}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{25-30\sqrt{5}+45}{5^{2}-\left(3\sqrt{5}\right)^{2}}
Multiply 9 and 5 to get 45.
\frac{70-30\sqrt{5}}{5^{2}-\left(3\sqrt{5}\right)^{2}}
Add 25 and 45 to get 70.
\frac{70-30\sqrt{5}}{25-\left(3\sqrt{5}\right)^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{70-30\sqrt{5}}{25-3^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(3\sqrt{5}\right)^{2}.
\frac{70-30\sqrt{5}}{25-9\left(\sqrt{5}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{70-30\sqrt{5}}{25-9\times 5}
The square of \sqrt{5} is 5.
\frac{70-30\sqrt{5}}{25-45}
Multiply 9 and 5 to get 45.
\frac{70-30\sqrt{5}}{-20}
Subtract 45 from 25 to get -20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}