Solve for x
x = -\frac{139}{57} = -2\frac{25}{57} \approx -2.438596491
Graph
Share
Copied to clipboard
11x-15-2x^{2}-65x=\left(1-2x\right)\left(x-1\right)+125
Use the distributive property to multiply 5-2x by x-3 and combine like terms.
-54x-15-2x^{2}=\left(1-2x\right)\left(x-1\right)+125
Combine 11x and -65x to get -54x.
-54x-15-2x^{2}=3x-1-2x^{2}+125
Use the distributive property to multiply 1-2x by x-1 and combine like terms.
-54x-15-2x^{2}=3x+124-2x^{2}
Add -1 and 125 to get 124.
-54x-15-2x^{2}-3x=124-2x^{2}
Subtract 3x from both sides.
-57x-15-2x^{2}=124-2x^{2}
Combine -54x and -3x to get -57x.
-57x-15-2x^{2}+2x^{2}=124
Add 2x^{2} to both sides.
-57x-15=124
Combine -2x^{2} and 2x^{2} to get 0.
-57x=124+15
Add 15 to both sides.
-57x=139
Add 124 and 15 to get 139.
x=\frac{139}{-57}
Divide both sides by -57.
x=-\frac{139}{57}
Fraction \frac{139}{-57} can be rewritten as -\frac{139}{57} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}