Solve for x
x = \frac{\sqrt{165}}{2} \approx 6.422616289
x = -\frac{\sqrt{165}}{2} \approx -6.422616289
Graph
Share
Copied to clipboard
4x^{2}=165
Multiply x and x to get x^{2}.
x^{2}=\frac{165}{4}
Divide both sides by 4.
x=\frac{\sqrt{165}}{2} x=-\frac{\sqrt{165}}{2}
Take the square root of both sides of the equation.
4x^{2}=165
Multiply x and x to get x^{2}.
4x^{2}-165=0
Subtract 165 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-165\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -165 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-165\right)}}{2\times 4}
Square 0.
x=\frac{0±\sqrt{-16\left(-165\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{0±\sqrt{2640}}{2\times 4}
Multiply -16 times -165.
x=\frac{0±4\sqrt{165}}{2\times 4}
Take the square root of 2640.
x=\frac{0±4\sqrt{165}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{165}}{2}
Now solve the equation x=\frac{0±4\sqrt{165}}{8} when ± is plus.
x=-\frac{\sqrt{165}}{2}
Now solve the equation x=\frac{0±4\sqrt{165}}{8} when ± is minus.
x=\frac{\sqrt{165}}{2} x=-\frac{\sqrt{165}}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}