Solve for x
x=\frac{\sqrt{4282}}{60}-\frac{1}{3}\approx 0.75728321
x=-\frac{\sqrt{4282}}{60}-\frac{1}{3}\approx -1.423949877
Graph
Share
Copied to clipboard
\left(400+800x+400x^{2}+800x^{2}\right)\times 2=1.1^{2}\times 2800
Use the distributive property to multiply 400 by 1+2x+x^{2}.
\left(400+800x+1200x^{2}\right)\times 2=1.1^{2}\times 2800
Combine 400x^{2} and 800x^{2} to get 1200x^{2}.
800+1600x+2400x^{2}=1.1^{2}\times 2800
Use the distributive property to multiply 400+800x+1200x^{2} by 2.
800+1600x+2400x^{2}=1.21\times 2800
Calculate 1.1 to the power of 2 and get 1.21.
800+1600x+2400x^{2}=3388
Multiply 1.21 and 2800 to get 3388.
800+1600x+2400x^{2}-3388=0
Subtract 3388 from both sides.
-2588+1600x+2400x^{2}=0
Subtract 3388 from 800 to get -2588.
2400x^{2}+1600x-2588=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1600±\sqrt{1600^{2}-4\times 2400\left(-2588\right)}}{2\times 2400}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2400 for a, 1600 for b, and -2588 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1600±\sqrt{2560000-4\times 2400\left(-2588\right)}}{2\times 2400}
Square 1600.
x=\frac{-1600±\sqrt{2560000-9600\left(-2588\right)}}{2\times 2400}
Multiply -4 times 2400.
x=\frac{-1600±\sqrt{2560000+24844800}}{2\times 2400}
Multiply -9600 times -2588.
x=\frac{-1600±\sqrt{27404800}}{2\times 2400}
Add 2560000 to 24844800.
x=\frac{-1600±80\sqrt{4282}}{2\times 2400}
Take the square root of 27404800.
x=\frac{-1600±80\sqrt{4282}}{4800}
Multiply 2 times 2400.
x=\frac{80\sqrt{4282}-1600}{4800}
Now solve the equation x=\frac{-1600±80\sqrt{4282}}{4800} when ± is plus. Add -1600 to 80\sqrt{4282}.
x=\frac{\sqrt{4282}}{60}-\frac{1}{3}
Divide -1600+80\sqrt{4282} by 4800.
x=\frac{-80\sqrt{4282}-1600}{4800}
Now solve the equation x=\frac{-1600±80\sqrt{4282}}{4800} when ± is minus. Subtract 80\sqrt{4282} from -1600.
x=-\frac{\sqrt{4282}}{60}-\frac{1}{3}
Divide -1600-80\sqrt{4282} by 4800.
x=\frac{\sqrt{4282}}{60}-\frac{1}{3} x=-\frac{\sqrt{4282}}{60}-\frac{1}{3}
The equation is now solved.
\left(400+800x+400x^{2}+800x^{2}\right)\times 2=1.1^{2}\times 2800
Use the distributive property to multiply 400 by 1+2x+x^{2}.
\left(400+800x+1200x^{2}\right)\times 2=1.1^{2}\times 2800
Combine 400x^{2} and 800x^{2} to get 1200x^{2}.
800+1600x+2400x^{2}=1.1^{2}\times 2800
Use the distributive property to multiply 400+800x+1200x^{2} by 2.
800+1600x+2400x^{2}=1.21\times 2800
Calculate 1.1 to the power of 2 and get 1.21.
800+1600x+2400x^{2}=3388
Multiply 1.21 and 2800 to get 3388.
1600x+2400x^{2}=3388-800
Subtract 800 from both sides.
1600x+2400x^{2}=2588
Subtract 800 from 3388 to get 2588.
2400x^{2}+1600x=2588
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2400x^{2}+1600x}{2400}=\frac{2588}{2400}
Divide both sides by 2400.
x^{2}+\frac{1600}{2400}x=\frac{2588}{2400}
Dividing by 2400 undoes the multiplication by 2400.
x^{2}+\frac{2}{3}x=\frac{2588}{2400}
Reduce the fraction \frac{1600}{2400} to lowest terms by extracting and canceling out 800.
x^{2}+\frac{2}{3}x=\frac{647}{600}
Reduce the fraction \frac{2588}{2400} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{647}{600}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{647}{600}+\frac{1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{2141}{1800}
Add \frac{647}{600} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{3}\right)^{2}=\frac{2141}{1800}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{2141}{1800}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{\sqrt{4282}}{60} x+\frac{1}{3}=-\frac{\sqrt{4282}}{60}
Simplify.
x=\frac{\sqrt{4282}}{60}-\frac{1}{3} x=-\frac{\sqrt{4282}}{60}-\frac{1}{3}
Subtract \frac{1}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}