Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

1000-\left(40-x\right)\left(25-x\right)=1156
Multiply 40 and 25 to get 1000.
1000-\left(1000-65x+x^{2}\right)=1156
Use the distributive property to multiply 40-x by 25-x and combine like terms.
1000-1000+65x-x^{2}=1156
To find the opposite of 1000-65x+x^{2}, find the opposite of each term.
65x-x^{2}=1156
Subtract 1000 from 1000 to get 0.
65x-x^{2}-1156=0
Subtract 1156 from both sides.
-x^{2}+65x-1156=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-65±\sqrt{65^{2}-4\left(-1\right)\left(-1156\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 65 for b, and -1156 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-65±\sqrt{4225-4\left(-1\right)\left(-1156\right)}}{2\left(-1\right)}
Square 65.
x=\frac{-65±\sqrt{4225+4\left(-1156\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-65±\sqrt{4225-4624}}{2\left(-1\right)}
Multiply 4 times -1156.
x=\frac{-65±\sqrt{-399}}{2\left(-1\right)}
Add 4225 to -4624.
x=\frac{-65±\sqrt{399}i}{2\left(-1\right)}
Take the square root of -399.
x=\frac{-65±\sqrt{399}i}{-2}
Multiply 2 times -1.
x=\frac{-65+\sqrt{399}i}{-2}
Now solve the equation x=\frac{-65±\sqrt{399}i}{-2} when ± is plus. Add -65 to i\sqrt{399}.
x=\frac{-\sqrt{399}i+65}{2}
Divide -65+i\sqrt{399} by -2.
x=\frac{-\sqrt{399}i-65}{-2}
Now solve the equation x=\frac{-65±\sqrt{399}i}{-2} when ± is minus. Subtract i\sqrt{399} from -65.
x=\frac{65+\sqrt{399}i}{2}
Divide -65-i\sqrt{399} by -2.
x=\frac{-\sqrt{399}i+65}{2} x=\frac{65+\sqrt{399}i}{2}
The equation is now solved.
1000-\left(40-x\right)\left(25-x\right)=1156
Multiply 40 and 25 to get 1000.
1000-\left(1000-65x+x^{2}\right)=1156
Use the distributive property to multiply 40-x by 25-x and combine like terms.
1000-1000+65x-x^{2}=1156
To find the opposite of 1000-65x+x^{2}, find the opposite of each term.
65x-x^{2}=1156
Subtract 1000 from 1000 to get 0.
-x^{2}+65x=1156
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+65x}{-1}=\frac{1156}{-1}
Divide both sides by -1.
x^{2}+\frac{65}{-1}x=\frac{1156}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-65x=\frac{1156}{-1}
Divide 65 by -1.
x^{2}-65x=-1156
Divide 1156 by -1.
x^{2}-65x+\left(-\frac{65}{2}\right)^{2}=-1156+\left(-\frac{65}{2}\right)^{2}
Divide -65, the coefficient of the x term, by 2 to get -\frac{65}{2}. Then add the square of -\frac{65}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-65x+\frac{4225}{4}=-1156+\frac{4225}{4}
Square -\frac{65}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-65x+\frac{4225}{4}=-\frac{399}{4}
Add -1156 to \frac{4225}{4}.
\left(x-\frac{65}{2}\right)^{2}=-\frac{399}{4}
Factor x^{2}-65x+\frac{4225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{65}{2}\right)^{2}}=\sqrt{-\frac{399}{4}}
Take the square root of both sides of the equation.
x-\frac{65}{2}=\frac{\sqrt{399}i}{2} x-\frac{65}{2}=-\frac{\sqrt{399}i}{2}
Simplify.
x=\frac{65+\sqrt{399}i}{2} x=\frac{-\sqrt{399}i+65}{2}
Add \frac{65}{2} to both sides of the equation.