Evaluate
11.6
Factor
\frac{2 \cdot 29}{5} = 11\frac{3}{5} = 11.6
Share
Copied to clipboard
4.8+\frac{2.4}{4-18.9+2.9}-2.2+\frac{60}{10}-1.8+5
Divide 20 by 5 to get 4.
4.8+\frac{2.4}{-14.9+2.9}-2.2+\frac{60}{10}-1.8+5
Subtract 18.9 from 4 to get -14.9.
4.8+\frac{2.4}{-12}-2.2+\frac{60}{10}-1.8+5
Add -14.9 and 2.9 to get -12.
4.8+\frac{24}{-120}-2.2+\frac{60}{10}-1.8+5
Expand \frac{2.4}{-12} by multiplying both numerator and the denominator by 10.
4.8-\frac{1}{5}-2.2+\frac{60}{10}-1.8+5
Reduce the fraction \frac{24}{-120} to lowest terms by extracting and canceling out 24.
\frac{24}{5}-\frac{1}{5}-2.2+\frac{60}{10}-1.8+5
Convert decimal number 4.8 to fraction \frac{48}{10}. Reduce the fraction \frac{48}{10} to lowest terms by extracting and canceling out 2.
\frac{24-1}{5}-2.2+\frac{60}{10}-1.8+5
Since \frac{24}{5} and \frac{1}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{23}{5}-2.2+\frac{60}{10}-1.8+5
Subtract 1 from 24 to get 23.
\frac{23}{5}-\frac{11}{5}+\frac{60}{10}-1.8+5
Convert decimal number 2.2 to fraction \frac{22}{10}. Reduce the fraction \frac{22}{10} to lowest terms by extracting and canceling out 2.
\frac{23-11}{5}+\frac{60}{10}-1.8+5
Since \frac{23}{5} and \frac{11}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{12}{5}+\frac{60}{10}-1.8+5
Subtract 11 from 23 to get 12.
\frac{12}{5}+6-1.8+5
Divide 60 by 10 to get 6.
\frac{12}{5}+\frac{30}{5}-1.8+5
Convert 6 to fraction \frac{30}{5}.
\frac{12+30}{5}-1.8+5
Since \frac{12}{5} and \frac{30}{5} have the same denominator, add them by adding their numerators.
\frac{42}{5}-1.8+5
Add 12 and 30 to get 42.
\frac{42}{5}-\frac{9}{5}+5
Convert decimal number 1.8 to fraction \frac{18}{10}. Reduce the fraction \frac{18}{10} to lowest terms by extracting and canceling out 2.
\frac{42-9}{5}+5
Since \frac{42}{5} and \frac{9}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{33}{5}+5
Subtract 9 from 42 to get 33.
\frac{33}{5}+\frac{25}{5}
Convert 5 to fraction \frac{25}{5}.
\frac{33+25}{5}
Since \frac{33}{5} and \frac{25}{5} have the same denominator, add them by adding their numerators.
\frac{58}{5}
Add 33 and 25 to get 58.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}