Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

800-180x-5x^{2}+4\left(200-50x\right)=1250
Use the distributive property to multiply 4-x by 200+5x and combine like terms.
800-180x-5x^{2}+800-200x=1250
Use the distributive property to multiply 4 by 200-50x.
1600-180x-5x^{2}-200x=1250
Add 800 and 800 to get 1600.
1600-380x-5x^{2}=1250
Combine -180x and -200x to get -380x.
1600-380x-5x^{2}-1250=0
Subtract 1250 from both sides.
350-380x-5x^{2}=0
Subtract 1250 from 1600 to get 350.
-5x^{2}-380x+350=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-380\right)±\sqrt{\left(-380\right)^{2}-4\left(-5\right)\times 350}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, -380 for b, and 350 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-380\right)±\sqrt{144400-4\left(-5\right)\times 350}}{2\left(-5\right)}
Square -380.
x=\frac{-\left(-380\right)±\sqrt{144400+20\times 350}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-\left(-380\right)±\sqrt{144400+7000}}{2\left(-5\right)}
Multiply 20 times 350.
x=\frac{-\left(-380\right)±\sqrt{151400}}{2\left(-5\right)}
Add 144400 to 7000.
x=\frac{-\left(-380\right)±10\sqrt{1514}}{2\left(-5\right)}
Take the square root of 151400.
x=\frac{380±10\sqrt{1514}}{2\left(-5\right)}
The opposite of -380 is 380.
x=\frac{380±10\sqrt{1514}}{-10}
Multiply 2 times -5.
x=\frac{10\sqrt{1514}+380}{-10}
Now solve the equation x=\frac{380±10\sqrt{1514}}{-10} when ± is plus. Add 380 to 10\sqrt{1514}.
x=-\left(\sqrt{1514}+38\right)
Divide 380+10\sqrt{1514} by -10.
x=\frac{380-10\sqrt{1514}}{-10}
Now solve the equation x=\frac{380±10\sqrt{1514}}{-10} when ± is minus. Subtract 10\sqrt{1514} from 380.
x=\sqrt{1514}-38
Divide 380-10\sqrt{1514} by -10.
x=-\left(\sqrt{1514}+38\right) x=\sqrt{1514}-38
The equation is now solved.
800-180x-5x^{2}+4\left(200-50x\right)=1250
Use the distributive property to multiply 4-x by 200+5x and combine like terms.
800-180x-5x^{2}+800-200x=1250
Use the distributive property to multiply 4 by 200-50x.
1600-180x-5x^{2}-200x=1250
Add 800 and 800 to get 1600.
1600-380x-5x^{2}=1250
Combine -180x and -200x to get -380x.
-380x-5x^{2}=1250-1600
Subtract 1600 from both sides.
-380x-5x^{2}=-350
Subtract 1600 from 1250 to get -350.
-5x^{2}-380x=-350
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}-380x}{-5}=-\frac{350}{-5}
Divide both sides by -5.
x^{2}+\left(-\frac{380}{-5}\right)x=-\frac{350}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}+76x=-\frac{350}{-5}
Divide -380 by -5.
x^{2}+76x=70
Divide -350 by -5.
x^{2}+76x+38^{2}=70+38^{2}
Divide 76, the coefficient of the x term, by 2 to get 38. Then add the square of 38 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+76x+1444=70+1444
Square 38.
x^{2}+76x+1444=1514
Add 70 to 1444.
\left(x+38\right)^{2}=1514
Factor x^{2}+76x+1444. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+38\right)^{2}}=\sqrt{1514}
Take the square root of both sides of the equation.
x+38=\sqrt{1514} x+38=-\sqrt{1514}
Simplify.
x=\sqrt{1514}-38 x=-\sqrt{1514}-38
Subtract 38 from both sides of the equation.
800-180x-5x^{2}+4\left(200-50x\right)=1250
Use the distributive property to multiply 4-x by 200+5x and combine like terms.
800-180x-5x^{2}+800-200x=1250
Use the distributive property to multiply 4 by 200-50x.
1600-180x-5x^{2}-200x=1250
Add 800 and 800 to get 1600.
1600-380x-5x^{2}=1250
Combine -180x and -200x to get -380x.
1600-380x-5x^{2}-1250=0
Subtract 1250 from both sides.
350-380x-5x^{2}=0
Subtract 1250 from 1600 to get 350.
-5x^{2}-380x+350=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-380\right)±\sqrt{\left(-380\right)^{2}-4\left(-5\right)\times 350}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, -380 for b, and 350 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-380\right)±\sqrt{144400-4\left(-5\right)\times 350}}{2\left(-5\right)}
Square -380.
x=\frac{-\left(-380\right)±\sqrt{144400+20\times 350}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-\left(-380\right)±\sqrt{144400+7000}}{2\left(-5\right)}
Multiply 20 times 350.
x=\frac{-\left(-380\right)±\sqrt{151400}}{2\left(-5\right)}
Add 144400 to 7000.
x=\frac{-\left(-380\right)±10\sqrt{1514}}{2\left(-5\right)}
Take the square root of 151400.
x=\frac{380±10\sqrt{1514}}{2\left(-5\right)}
The opposite of -380 is 380.
x=\frac{380±10\sqrt{1514}}{-10}
Multiply 2 times -5.
x=\frac{10\sqrt{1514}+380}{-10}
Now solve the equation x=\frac{380±10\sqrt{1514}}{-10} when ± is plus. Add 380 to 10\sqrt{1514}.
x=-\left(\sqrt{1514}+38\right)
Divide 380+10\sqrt{1514} by -10.
x=\frac{380-10\sqrt{1514}}{-10}
Now solve the equation x=\frac{380±10\sqrt{1514}}{-10} when ± is minus. Subtract 10\sqrt{1514} from 380.
x=\sqrt{1514}-38
Divide 380-10\sqrt{1514} by -10.
x=-\left(\sqrt{1514}+38\right) x=\sqrt{1514}-38
The equation is now solved.
800-180x-5x^{2}+4\left(200-50x\right)=1250
Use the distributive property to multiply 4-x by 200+5x and combine like terms.
800-180x-5x^{2}+800-200x=1250
Use the distributive property to multiply 4 by 200-50x.
1600-180x-5x^{2}-200x=1250
Add 800 and 800 to get 1600.
1600-380x-5x^{2}=1250
Combine -180x and -200x to get -380x.
-380x-5x^{2}=1250-1600
Subtract 1600 from both sides.
-380x-5x^{2}=-350
Subtract 1600 from 1250 to get -350.
-5x^{2}-380x=-350
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}-380x}{-5}=-\frac{350}{-5}
Divide both sides by -5.
x^{2}+\left(-\frac{380}{-5}\right)x=-\frac{350}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}+76x=-\frac{350}{-5}
Divide -380 by -5.
x^{2}+76x=70
Divide -350 by -5.
x^{2}+76x+38^{2}=70+38^{2}
Divide 76, the coefficient of the x term, by 2 to get 38. Then add the square of 38 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+76x+1444=70+1444
Square 38.
x^{2}+76x+1444=1514
Add 70 to 1444.
\left(x+38\right)^{2}=1514
Factor x^{2}+76x+1444. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+38\right)^{2}}=\sqrt{1514}
Take the square root of both sides of the equation.
x+38=\sqrt{1514} x+38=-\sqrt{1514}
Simplify.
x=\sqrt{1514}-38 x=-\sqrt{1514}-38
Subtract 38 from both sides of the equation.