Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

16-x^{2}=33
Consider \left(4+x\right)\left(4-x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
-x^{2}=33-16
Subtract 16 from both sides.
-x^{2}=17
Subtract 16 from 33 to get 17.
x^{2}=-17
Divide both sides by -1.
x=\sqrt{17}i x=-\sqrt{17}i
The equation is now solved.
16-x^{2}=33
Consider \left(4+x\right)\left(4-x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
16-x^{2}-33=0
Subtract 33 from both sides.
-17-x^{2}=0
Subtract 33 from 16 to get -17.
-x^{2}-17=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-17\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and -17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\left(-17\right)}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\left(-17\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{-68}}{2\left(-1\right)}
Multiply 4 times -17.
x=\frac{0±2\sqrt{17}i}{2\left(-1\right)}
Take the square root of -68.
x=\frac{0±2\sqrt{17}i}{-2}
Multiply 2 times -1.
x=-\sqrt{17}i
Now solve the equation x=\frac{0±2\sqrt{17}i}{-2} when ± is plus.
x=\sqrt{17}i
Now solve the equation x=\frac{0±2\sqrt{17}i}{-2} when ± is minus.
x=-\sqrt{17}i x=\sqrt{17}i
The equation is now solved.