Evaluate
-\frac{16}{3}\approx -5.333333333
Factor
-\frac{16}{3} = -5\frac{1}{3} = -5.333333333333333
Share
Copied to clipboard
16-\frac{4^{3}}{3}-\left(4\times 0-\frac{0^{3}}{3}\right)
Multiply 4 and 4 to get 16.
16-\frac{64}{3}-\left(4\times 0-\frac{0^{3}}{3}\right)
Calculate 4 to the power of 3 and get 64.
\frac{48}{3}-\frac{64}{3}-\left(4\times 0-\frac{0^{3}}{3}\right)
Convert 16 to fraction \frac{48}{3}.
\frac{48-64}{3}-\left(4\times 0-\frac{0^{3}}{3}\right)
Since \frac{48}{3} and \frac{64}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{16}{3}-\left(4\times 0-\frac{0^{3}}{3}\right)
Subtract 64 from 48 to get -16.
-\frac{16}{3}-\left(0-\frac{0^{3}}{3}\right)
Multiply 4 and 0 to get 0.
-\frac{16}{3}-\left(0-\frac{0}{3}\right)
Calculate 0 to the power of 3 and get 0.
-\frac{16}{3}-\left(0+0\right)
Zero divided by any non-zero number gives zero.
-\frac{16}{3}-0
Add 0 and 0 to get 0.
-\frac{16}{3}
Subtract 0 from -\frac{16}{3} to get -\frac{16}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}