Solve for x
x = \frac{3 \sqrt{17} - 9}{2} \approx 1.684658438
x=\frac{-3\sqrt{17}-9}{2}\approx -10.684658438
Graph
Share
Copied to clipboard
3x^{2}+15x-18=2x\left(x+3\right)
Use the distributive property to multiply 3x-3 by x+6 and combine like terms.
3x^{2}+15x-18=2x^{2}+6x
Use the distributive property to multiply 2x by x+3.
3x^{2}+15x-18-2x^{2}=6x
Subtract 2x^{2} from both sides.
x^{2}+15x-18=6x
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}+15x-18-6x=0
Subtract 6x from both sides.
x^{2}+9x-18=0
Combine 15x and -6x to get 9x.
x=\frac{-9±\sqrt{9^{2}-4\left(-18\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 9 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-18\right)}}{2}
Square 9.
x=\frac{-9±\sqrt{81+72}}{2}
Multiply -4 times -18.
x=\frac{-9±\sqrt{153}}{2}
Add 81 to 72.
x=\frac{-9±3\sqrt{17}}{2}
Take the square root of 153.
x=\frac{3\sqrt{17}-9}{2}
Now solve the equation x=\frac{-9±3\sqrt{17}}{2} when ± is plus. Add -9 to 3\sqrt{17}.
x=\frac{-3\sqrt{17}-9}{2}
Now solve the equation x=\frac{-9±3\sqrt{17}}{2} when ± is minus. Subtract 3\sqrt{17} from -9.
x=\frac{3\sqrt{17}-9}{2} x=\frac{-3\sqrt{17}-9}{2}
The equation is now solved.
3x^{2}+15x-18=2x\left(x+3\right)
Use the distributive property to multiply 3x-3 by x+6 and combine like terms.
3x^{2}+15x-18=2x^{2}+6x
Use the distributive property to multiply 2x by x+3.
3x^{2}+15x-18-2x^{2}=6x
Subtract 2x^{2} from both sides.
x^{2}+15x-18=6x
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}+15x-18-6x=0
Subtract 6x from both sides.
x^{2}+9x-18=0
Combine 15x and -6x to get 9x.
x^{2}+9x=18
Add 18 to both sides. Anything plus zero gives itself.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=18+\left(\frac{9}{2}\right)^{2}
Divide 9, the coefficient of the x term, by 2 to get \frac{9}{2}. Then add the square of \frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+9x+\frac{81}{4}=18+\frac{81}{4}
Square \frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+9x+\frac{81}{4}=\frac{153}{4}
Add 18 to \frac{81}{4}.
\left(x+\frac{9}{2}\right)^{2}=\frac{153}{4}
Factor x^{2}+9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{153}{4}}
Take the square root of both sides of the equation.
x+\frac{9}{2}=\frac{3\sqrt{17}}{2} x+\frac{9}{2}=-\frac{3\sqrt{17}}{2}
Simplify.
x=\frac{3\sqrt{17}-9}{2} x=\frac{-3\sqrt{17}-9}{2}
Subtract \frac{9}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}