Solve for x
x = -\frac{5}{3} = -1\frac{2}{3} \approx -1.666666667
x=4
Graph
Share
Copied to clipboard
3x^{2}-7x-10=10
Use the distributive property to multiply 3x-10 by x+1 and combine like terms.
3x^{2}-7x-10-10=0
Subtract 10 from both sides.
3x^{2}-7x-20=0
Subtract 10 from -10 to get -20.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 3\left(-20\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -7 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 3\left(-20\right)}}{2\times 3}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-12\left(-20\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-7\right)±\sqrt{49+240}}{2\times 3}
Multiply -12 times -20.
x=\frac{-\left(-7\right)±\sqrt{289}}{2\times 3}
Add 49 to 240.
x=\frac{-\left(-7\right)±17}{2\times 3}
Take the square root of 289.
x=\frac{7±17}{2\times 3}
The opposite of -7 is 7.
x=\frac{7±17}{6}
Multiply 2 times 3.
x=\frac{24}{6}
Now solve the equation x=\frac{7±17}{6} when ± is plus. Add 7 to 17.
x=4
Divide 24 by 6.
x=-\frac{10}{6}
Now solve the equation x=\frac{7±17}{6} when ± is minus. Subtract 17 from 7.
x=-\frac{5}{3}
Reduce the fraction \frac{-10}{6} to lowest terms by extracting and canceling out 2.
x=4 x=-\frac{5}{3}
The equation is now solved.
3x^{2}-7x-10=10
Use the distributive property to multiply 3x-10 by x+1 and combine like terms.
3x^{2}-7x=10+10
Add 10 to both sides.
3x^{2}-7x=20
Add 10 and 10 to get 20.
\frac{3x^{2}-7x}{3}=\frac{20}{3}
Divide both sides by 3.
x^{2}-\frac{7}{3}x=\frac{20}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{7}{3}x+\left(-\frac{7}{6}\right)^{2}=\frac{20}{3}+\left(-\frac{7}{6}\right)^{2}
Divide -\frac{7}{3}, the coefficient of the x term, by 2 to get -\frac{7}{6}. Then add the square of -\frac{7}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{20}{3}+\frac{49}{36}
Square -\frac{7}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{3}x+\frac{49}{36}=\frac{289}{36}
Add \frac{20}{3} to \frac{49}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{6}\right)^{2}=\frac{289}{36}
Factor x^{2}-\frac{7}{3}x+\frac{49}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{6}\right)^{2}}=\sqrt{\frac{289}{36}}
Take the square root of both sides of the equation.
x-\frac{7}{6}=\frac{17}{6} x-\frac{7}{6}=-\frac{17}{6}
Simplify.
x=4 x=-\frac{5}{3}
Add \frac{7}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}