Evaluate
-\left(y-2\right)^{2}+9x^{2}
Expand
9x^{2}-y^{2}+4y-4
Share
Copied to clipboard
\left(3x+y-2\right)\left(3x-y-\left(-2\right)\right)
To find the opposite of y-2, find the opposite of each term.
\left(3x+y-2\right)\left(3x-y+2\right)
The opposite of -2 is 2.
9x^{2}-3xy+6x+3yx-y^{2}+2y-6x+2y-4
Apply the distributive property by multiplying each term of 3x+y-2 by each term of 3x-y+2.
9x^{2}+6x-y^{2}+2y-6x+2y-4
Combine -3xy and 3yx to get 0.
9x^{2}-y^{2}+2y+2y-4
Combine 6x and -6x to get 0.
9x^{2}-y^{2}+4y-4
Combine 2y and 2y to get 4y.
\left(3x+y-2\right)\left(3x-y-\left(-2\right)\right)
To find the opposite of y-2, find the opposite of each term.
\left(3x+y-2\right)\left(3x-y+2\right)
The opposite of -2 is 2.
9x^{2}-3xy+6x+3yx-y^{2}+2y-6x+2y-4
Apply the distributive property by multiplying each term of 3x+y-2 by each term of 3x-y+2.
9x^{2}+6x-y^{2}+2y-6x+2y-4
Combine -3xy and 3yx to get 0.
9x^{2}-y^{2}+2y+2y-4
Combine 6x and -6x to get 0.
9x^{2}-y^{2}+4y-4
Combine 2y and 2y to get 4y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}