Evaluate
5\left(x^{2}+3x+1\right)
Expand
5x^{2}+15x+5
Graph
Share
Copied to clipboard
\left(3x+2\right)\left(2x+3\right)-\left(x-1\right)^{2}
Multiply x-1 and x-1 to get \left(x-1\right)^{2}.
6x^{2}+9x+4x+6-\left(x-1\right)^{2}
Apply the distributive property by multiplying each term of 3x+2 by each term of 2x+3.
6x^{2}+13x+6-\left(x-1\right)^{2}
Combine 9x and 4x to get 13x.
6x^{2}+13x+6-\left(x^{2}-2x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
6x^{2}+13x+6-x^{2}-\left(-2x\right)-1
To find the opposite of x^{2}-2x+1, find the opposite of each term.
6x^{2}+13x+6-x^{2}+2x-1
The opposite of -2x is 2x.
5x^{2}+13x+6+2x-1
Combine 6x^{2} and -x^{2} to get 5x^{2}.
5x^{2}+15x+6-1
Combine 13x and 2x to get 15x.
5x^{2}+15x+5
Subtract 1 from 6 to get 5.
\left(3x+2\right)\left(2x+3\right)-\left(x-1\right)^{2}
Multiply x-1 and x-1 to get \left(x-1\right)^{2}.
6x^{2}+9x+4x+6-\left(x-1\right)^{2}
Apply the distributive property by multiplying each term of 3x+2 by each term of 2x+3.
6x^{2}+13x+6-\left(x-1\right)^{2}
Combine 9x and 4x to get 13x.
6x^{2}+13x+6-\left(x^{2}-2x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
6x^{2}+13x+6-x^{2}-\left(-2x\right)-1
To find the opposite of x^{2}-2x+1, find the opposite of each term.
6x^{2}+13x+6-x^{2}+2x-1
The opposite of -2x is 2x.
5x^{2}+13x+6+2x-1
Combine 6x^{2} and -x^{2} to get 5x^{2}.
5x^{2}+15x+6-1
Combine 13x and 2x to get 15x.
5x^{2}+15x+5
Subtract 1 from 6 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}