Solve for x
x=-\frac{1}{6}\approx -0.166666667
x=-1
Graph
Share
Copied to clipboard
6x^{2}+7x+2=1
Use the distributive property to multiply 3x+2 by 2x+1 and combine like terms.
6x^{2}+7x+2-1=0
Subtract 1 from both sides.
6x^{2}+7x+1=0
Subtract 1 from 2 to get 1.
x=\frac{-7±\sqrt{7^{2}-4\times 6}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 7 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 6}}{2\times 6}
Square 7.
x=\frac{-7±\sqrt{49-24}}{2\times 6}
Multiply -4 times 6.
x=\frac{-7±\sqrt{25}}{2\times 6}
Add 49 to -24.
x=\frac{-7±5}{2\times 6}
Take the square root of 25.
x=\frac{-7±5}{12}
Multiply 2 times 6.
x=-\frac{2}{12}
Now solve the equation x=\frac{-7±5}{12} when ± is plus. Add -7 to 5.
x=-\frac{1}{6}
Reduce the fraction \frac{-2}{12} to lowest terms by extracting and canceling out 2.
x=-\frac{12}{12}
Now solve the equation x=\frac{-7±5}{12} when ± is minus. Subtract 5 from -7.
x=-1
Divide -12 by 12.
x=-\frac{1}{6} x=-1
The equation is now solved.
6x^{2}+7x+2=1
Use the distributive property to multiply 3x+2 by 2x+1 and combine like terms.
6x^{2}+7x=1-2
Subtract 2 from both sides.
6x^{2}+7x=-1
Subtract 2 from 1 to get -1.
\frac{6x^{2}+7x}{6}=-\frac{1}{6}
Divide both sides by 6.
x^{2}+\frac{7}{6}x=-\frac{1}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\frac{7}{6}x+\left(\frac{7}{12}\right)^{2}=-\frac{1}{6}+\left(\frac{7}{12}\right)^{2}
Divide \frac{7}{6}, the coefficient of the x term, by 2 to get \frac{7}{12}. Then add the square of \frac{7}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{6}x+\frac{49}{144}=-\frac{1}{6}+\frac{49}{144}
Square \frac{7}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{25}{144}
Add -\frac{1}{6} to \frac{49}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{12}\right)^{2}=\frac{25}{144}
Factor x^{2}+\frac{7}{6}x+\frac{49}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{12}\right)^{2}}=\sqrt{\frac{25}{144}}
Take the square root of both sides of the equation.
x+\frac{7}{12}=\frac{5}{12} x+\frac{7}{12}=-\frac{5}{12}
Simplify.
x=-\frac{1}{6} x=-1
Subtract \frac{7}{12} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}