Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

32x-2x^{2}=120
Use the distributive property to multiply 32-2x by x.
32x-2x^{2}-120=0
Subtract 120 from both sides.
-2x^{2}+32x-120=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-32±\sqrt{32^{2}-4\left(-2\right)\left(-120\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 32 for b, and -120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±\sqrt{1024-4\left(-2\right)\left(-120\right)}}{2\left(-2\right)}
Square 32.
x=\frac{-32±\sqrt{1024+8\left(-120\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-32±\sqrt{1024-960}}{2\left(-2\right)}
Multiply 8 times -120.
x=\frac{-32±\sqrt{64}}{2\left(-2\right)}
Add 1024 to -960.
x=\frac{-32±8}{2\left(-2\right)}
Take the square root of 64.
x=\frac{-32±8}{-4}
Multiply 2 times -2.
x=-\frac{24}{-4}
Now solve the equation x=\frac{-32±8}{-4} when ± is plus. Add -32 to 8.
x=6
Divide -24 by -4.
x=-\frac{40}{-4}
Now solve the equation x=\frac{-32±8}{-4} when ± is minus. Subtract 8 from -32.
x=10
Divide -40 by -4.
x=6 x=10
The equation is now solved.
32x-2x^{2}=120
Use the distributive property to multiply 32-2x by x.
-2x^{2}+32x=120
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+32x}{-2}=\frac{120}{-2}
Divide both sides by -2.
x^{2}+\frac{32}{-2}x=\frac{120}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-16x=\frac{120}{-2}
Divide 32 by -2.
x^{2}-16x=-60
Divide 120 by -2.
x^{2}-16x+\left(-8\right)^{2}=-60+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-16x+64=-60+64
Square -8.
x^{2}-16x+64=4
Add -60 to 64.
\left(x-8\right)^{2}=4
Factor x^{2}-16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x-8=2 x-8=-2
Simplify.
x=10 x=6
Add 8 to both sides of the equation.