Solve for x
x=1
x=14
Graph
Share
Copied to clipboard
300-90x+6x^{2}=216
Use the distributive property to multiply 30-3x by 10-2x and combine like terms.
300-90x+6x^{2}-216=0
Subtract 216 from both sides.
84-90x+6x^{2}=0
Subtract 216 from 300 to get 84.
6x^{2}-90x+84=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 6\times 84}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -90 for b, and 84 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-90\right)±\sqrt{8100-4\times 6\times 84}}{2\times 6}
Square -90.
x=\frac{-\left(-90\right)±\sqrt{8100-24\times 84}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-90\right)±\sqrt{8100-2016}}{2\times 6}
Multiply -24 times 84.
x=\frac{-\left(-90\right)±\sqrt{6084}}{2\times 6}
Add 8100 to -2016.
x=\frac{-\left(-90\right)±78}{2\times 6}
Take the square root of 6084.
x=\frac{90±78}{2\times 6}
The opposite of -90 is 90.
x=\frac{90±78}{12}
Multiply 2 times 6.
x=\frac{168}{12}
Now solve the equation x=\frac{90±78}{12} when ± is plus. Add 90 to 78.
x=14
Divide 168 by 12.
x=\frac{12}{12}
Now solve the equation x=\frac{90±78}{12} when ± is minus. Subtract 78 from 90.
x=1
Divide 12 by 12.
x=14 x=1
The equation is now solved.
300-90x+6x^{2}=216
Use the distributive property to multiply 30-3x by 10-2x and combine like terms.
-90x+6x^{2}=216-300
Subtract 300 from both sides.
-90x+6x^{2}=-84
Subtract 300 from 216 to get -84.
6x^{2}-90x=-84
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{6x^{2}-90x}{6}=-\frac{84}{6}
Divide both sides by 6.
x^{2}+\left(-\frac{90}{6}\right)x=-\frac{84}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-15x=-\frac{84}{6}
Divide -90 by 6.
x^{2}-15x=-14
Divide -84 by 6.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=-14+\left(-\frac{15}{2}\right)^{2}
Divide -15, the coefficient of the x term, by 2 to get -\frac{15}{2}. Then add the square of -\frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-15x+\frac{225}{4}=-14+\frac{225}{4}
Square -\frac{15}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-15x+\frac{225}{4}=\frac{169}{4}
Add -14 to \frac{225}{4}.
\left(x-\frac{15}{2}\right)^{2}=\frac{169}{4}
Factor x^{2}-15x+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Take the square root of both sides of the equation.
x-\frac{15}{2}=\frac{13}{2} x-\frac{15}{2}=-\frac{13}{2}
Simplify.
x=14 x=1
Add \frac{15}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}