Solve for x
x=100
Graph
Share
Copied to clipboard
30000+910x-3x^{2}-30000-310x=30000
Use the distributive property to multiply 30+x by 1000-3x and combine like terms.
910x-3x^{2}-310x=30000
Subtract 30000 from 30000 to get 0.
600x-3x^{2}=30000
Combine 910x and -310x to get 600x.
600x-3x^{2}-30000=0
Subtract 30000 from both sides.
-3x^{2}+600x-30000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-600±\sqrt{600^{2}-4\left(-3\right)\left(-30000\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 600 for b, and -30000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-600±\sqrt{360000-4\left(-3\right)\left(-30000\right)}}{2\left(-3\right)}
Square 600.
x=\frac{-600±\sqrt{360000+12\left(-30000\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-600±\sqrt{360000-360000}}{2\left(-3\right)}
Multiply 12 times -30000.
x=\frac{-600±\sqrt{0}}{2\left(-3\right)}
Add 360000 to -360000.
x=-\frac{600}{2\left(-3\right)}
Take the square root of 0.
x=-\frac{600}{-6}
Multiply 2 times -3.
x=100
Divide -600 by -6.
30000+910x-3x^{2}-30000-310x=30000
Use the distributive property to multiply 30+x by 1000-3x and combine like terms.
910x-3x^{2}-310x=30000
Subtract 30000 from 30000 to get 0.
600x-3x^{2}=30000
Combine 910x and -310x to get 600x.
-3x^{2}+600x=30000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+600x}{-3}=\frac{30000}{-3}
Divide both sides by -3.
x^{2}+\frac{600}{-3}x=\frac{30000}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-200x=\frac{30000}{-3}
Divide 600 by -3.
x^{2}-200x=-10000
Divide 30000 by -3.
x^{2}-200x+\left(-100\right)^{2}=-10000+\left(-100\right)^{2}
Divide -200, the coefficient of the x term, by 2 to get -100. Then add the square of -100 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-200x+10000=-10000+10000
Square -100.
x^{2}-200x+10000=0
Add -10000 to 10000.
\left(x-100\right)^{2}=0
Factor x^{2}-200x+10000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-100\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-100=0 x-100=0
Simplify.
x=100 x=100
Add 100 to both sides of the equation.
x=100
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}