Evaluate
\frac{203}{57}\approx 3.561403509
Factor
\frac{7 \cdot 29}{3 \cdot 19} = 3\frac{32}{57} = 3.56140350877193
Share
Copied to clipboard
\frac{3.3+13.2+3.4\times 4+3.5\times 3+3.6\times 2.5+3.1\times 0.5+3.7\times 3.5+12+3.3+3.9+2\times 3.7+3\times 3.6}{28.5}
Multiply 3.3 and 4 to get 13.2.
\frac{16.5+3.4\times 4+3.5\times 3+3.6\times 2.5+3.1\times 0.5+3.7\times 3.5+12+3.3+3.9+2\times 3.7+3\times 3.6}{28.5}
Add 3.3 and 13.2 to get 16.5.
\frac{16.5+13.6+3.5\times 3+3.6\times 2.5+3.1\times 0.5+3.7\times 3.5+12+3.3+3.9+2\times 3.7+3\times 3.6}{28.5}
Multiply 3.4 and 4 to get 13.6.
\frac{30.1+3.5\times 3+3.6\times 2.5+3.1\times 0.5+3.7\times 3.5+12+3.3+3.9+2\times 3.7+3\times 3.6}{28.5}
Add 16.5 and 13.6 to get 30.1.
\frac{30.1+10.5+3.6\times 2.5+3.1\times 0.5+3.7\times 3.5+12+3.3+3.9+2\times 3.7+3\times 3.6}{28.5}
Multiply 3.5 and 3 to get 10.5.
\frac{40.6+3.6\times 2.5+3.1\times 0.5+3.7\times 3.5+12+3.3+3.9+2\times 3.7+3\times 3.6}{28.5}
Add 30.1 and 10.5 to get 40.6.
\frac{40.6+9+3.1\times 0.5+3.7\times 3.5+12+3.3+3.9+2\times 3.7+3\times 3.6}{28.5}
Multiply 3.6 and 2.5 to get 9.
\frac{49.6+3.1\times 0.5+3.7\times 3.5+12+3.3+3.9+2\times 3.7+3\times 3.6}{28.5}
Add 40.6 and 9 to get 49.6.
\frac{49.6+1.55+3.7\times 3.5+12+3.3+3.9+2\times 3.7+3\times 3.6}{28.5}
Multiply 3.1 and 0.5 to get 1.55.
\frac{51.15+3.7\times 3.5+12+3.3+3.9+2\times 3.7+3\times 3.6}{28.5}
Add 49.6 and 1.55 to get 51.15.
\frac{51.15+12.95+12+3.3+3.9+2\times 3.7+3\times 3.6}{28.5}
Multiply 3.7 and 3.5 to get 12.95.
\frac{64.1+12+3.3+3.9+2\times 3.7+3\times 3.6}{28.5}
Add 51.15 and 12.95 to get 64.1.
\frac{76.1+3.3+3.9+2\times 3.7+3\times 3.6}{28.5}
Add 64.1 and 12 to get 76.1.
\frac{79.4+3.9+2\times 3.7+3\times 3.6}{28.5}
Add 76.1 and 3.3 to get 79.4.
\frac{83.3+2\times 3.7+3\times 3.6}{28.5}
Add 79.4 and 3.9 to get 83.3.
\frac{83.3+7.4+3\times 3.6}{28.5}
Multiply 2 and 3.7 to get 7.4.
\frac{90.7+3\times 3.6}{28.5}
Add 83.3 and 7.4 to get 90.7.
\frac{90.7+10.8}{28.5}
Multiply 3 and 3.6 to get 10.8.
\frac{101.5}{28.5}
Add 90.7 and 10.8 to get 101.5.
\frac{1015}{285}
Expand \frac{101.5}{28.5} by multiplying both numerator and the denominator by 10.
\frac{203}{57}
Reduce the fraction \frac{1015}{285} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}