(3- \sqrt{ 5) } \left( \sqrt{ 10 } - \sqrt{ 2 } \right) \sqrt{ 3 } + \sqrt{ 5 }
Evaluate
\sqrt{5}+4\sqrt{30}-8\sqrt{6}\approx 4.549052335
Share
Copied to clipboard
\left(3\sqrt{10}-3\sqrt{2}-\sqrt{5}\sqrt{10}+\sqrt{5}\sqrt{2}\right)\sqrt{3}+\sqrt{5}
Apply the distributive property by multiplying each term of 3-\sqrt{5} by each term of \sqrt{10}-\sqrt{2}.
\left(3\sqrt{10}-3\sqrt{2}-\sqrt{5}\sqrt{5}\sqrt{2}+\sqrt{5}\sqrt{2}\right)\sqrt{3}+\sqrt{5}
Factor 10=5\times 2. Rewrite the square root of the product \sqrt{5\times 2} as the product of square roots \sqrt{5}\sqrt{2}.
\left(3\sqrt{10}-3\sqrt{2}-5\sqrt{2}+\sqrt{5}\sqrt{2}\right)\sqrt{3}+\sqrt{5}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\left(3\sqrt{10}-8\sqrt{2}+\sqrt{5}\sqrt{2}\right)\sqrt{3}+\sqrt{5}
Combine -3\sqrt{2} and -5\sqrt{2} to get -8\sqrt{2}.
\left(3\sqrt{10}-8\sqrt{2}+\sqrt{10}\right)\sqrt{3}+\sqrt{5}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\left(4\sqrt{10}-8\sqrt{2}\right)\sqrt{3}+\sqrt{5}
Combine 3\sqrt{10} and \sqrt{10} to get 4\sqrt{10}.
4\sqrt{10}\sqrt{3}-8\sqrt{2}\sqrt{3}+\sqrt{5}
Use the distributive property to multiply 4\sqrt{10}-8\sqrt{2} by \sqrt{3}.
4\sqrt{30}-8\sqrt{2}\sqrt{3}+\sqrt{5}
To multiply \sqrt{10} and \sqrt{3}, multiply the numbers under the square root.
4\sqrt{30}-8\sqrt{6}+\sqrt{5}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}