Solve for x
x=\frac{9}{4}-\frac{15}{x_{1}}
x_{1}\neq 0
Solve for x_1
x_{1}=\frac{60}{9-4x}
x\neq \frac{9}{4}
Graph
Share
Copied to clipboard
\left(3-\frac{4x}{3}\right)x_{1}=20
Multiply both sides of the equation by 5.
3x_{1}+\left(-\frac{4x}{3}\right)x_{1}=20
Use the distributive property to multiply 3-\frac{4x}{3} by x_{1}.
3x_{1}+\frac{-4xx_{1}}{3}=20
Express \left(-\frac{4x}{3}\right)x_{1} as a single fraction.
\frac{-4xx_{1}}{3}=20-3x_{1}
Subtract 3x_{1} from both sides.
-4xx_{1}=60-9x_{1}
Multiply both sides of the equation by 3.
\left(-4x_{1}\right)x=60-9x_{1}
The equation is in standard form.
\frac{\left(-4x_{1}\right)x}{-4x_{1}}=\frac{60-9x_{1}}{-4x_{1}}
Divide both sides by -4x_{1}.
x=\frac{60-9x_{1}}{-4x_{1}}
Dividing by -4x_{1} undoes the multiplication by -4x_{1}.
x=\frac{9}{4}-\frac{15}{x_{1}}
Divide 60-9x_{1} by -4x_{1}.
\left(3-\frac{4x}{3}\right)x_{1}=20
Multiply both sides of the equation by 5.
3x_{1}+\left(-\frac{4x}{3}\right)x_{1}=20
Use the distributive property to multiply 3-\frac{4x}{3} by x_{1}.
3x_{1}+\frac{-4xx_{1}}{3}=20
Express \left(-\frac{4x}{3}\right)x_{1} as a single fraction.
9x_{1}-4xx_{1}=60
Multiply both sides of the equation by 3.
\left(9-4x\right)x_{1}=60
Combine all terms containing x_{1}.
\frac{\left(9-4x\right)x_{1}}{9-4x}=\frac{60}{9-4x}
Divide both sides by 9-4x.
x_{1}=\frac{60}{9-4x}
Dividing by 9-4x undoes the multiplication by 9-4x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}