Evaluate
\sqrt{5}+3\approx 5.236067977
Share
Copied to clipboard
\frac{\left(3\sqrt{6}+\sqrt{30}\right)\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{6}+\sqrt{30}}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\left(3\sqrt{6}+\sqrt{30}\right)\sqrt{6}}{6}
The square of \sqrt{6} is 6.
\frac{3\left(\sqrt{6}\right)^{2}+\sqrt{30}\sqrt{6}}{6}
Use the distributive property to multiply 3\sqrt{6}+\sqrt{30} by \sqrt{6}.
\frac{3\times 6+\sqrt{30}\sqrt{6}}{6}
The square of \sqrt{6} is 6.
\frac{18+\sqrt{30}\sqrt{6}}{6}
Multiply 3 and 6 to get 18.
\frac{18+\sqrt{6}\sqrt{5}\sqrt{6}}{6}
Factor 30=6\times 5. Rewrite the square root of the product \sqrt{6\times 5} as the product of square roots \sqrt{6}\sqrt{5}.
\frac{18+6\sqrt{5}}{6}
Multiply \sqrt{6} and \sqrt{6} to get 6.
3+\sqrt{5}
Divide each term of 18+6\sqrt{5} by 6 to get 3+\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}