Solve for y (complex solution)
\left\{\begin{matrix}y=-\frac{3x-1}{2x-1}\text{, }&x\neq \frac{1}{2}\\y\in \mathrm{C}\text{, }&x=-1\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=-\frac{3x-1}{2x-1}\text{, }&x\neq \frac{1}{2}\\y\in \mathrm{R}\text{, }&x=-1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=-1\text{, }&\text{unconditionally}\\x=\frac{y+1}{2y+3}\text{, }&y\neq -\frac{3}{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
2yx^{2}+3x^{2}+\left(y+2\right)x-y-1=0
Use the distributive property to multiply 2y+3 by x^{2}.
2yx^{2}+3x^{2}+yx+2x-y-1=0
Use the distributive property to multiply y+2 by x.
2yx^{2}+yx+2x-y-1=-3x^{2}
Subtract 3x^{2} from both sides. Anything subtracted from zero gives its negation.
2yx^{2}+yx-y-1=-3x^{2}-2x
Subtract 2x from both sides.
2yx^{2}+yx-y=-3x^{2}-2x+1
Add 1 to both sides.
\left(2x^{2}+x-1\right)y=-3x^{2}-2x+1
Combine all terms containing y.
\left(2x^{2}+x-1\right)y=1-2x-3x^{2}
The equation is in standard form.
\frac{\left(2x^{2}+x-1\right)y}{2x^{2}+x-1}=-\frac{\left(3x-1\right)\left(x+1\right)}{2x^{2}+x-1}
Divide both sides by 2x^{2}+x-1.
y=-\frac{\left(3x-1\right)\left(x+1\right)}{2x^{2}+x-1}
Dividing by 2x^{2}+x-1 undoes the multiplication by 2x^{2}+x-1.
y=-\frac{3x-1}{2x-1}
Divide -\left(1+x\right)\left(-1+3x\right) by 2x^{2}+x-1.
2yx^{2}+3x^{2}+\left(y+2\right)x-y-1=0
Use the distributive property to multiply 2y+3 by x^{2}.
2yx^{2}+3x^{2}+yx+2x-y-1=0
Use the distributive property to multiply y+2 by x.
2yx^{2}+yx+2x-y-1=-3x^{2}
Subtract 3x^{2} from both sides. Anything subtracted from zero gives its negation.
2yx^{2}+yx-y-1=-3x^{2}-2x
Subtract 2x from both sides.
2yx^{2}+yx-y=-3x^{2}-2x+1
Add 1 to both sides.
\left(2x^{2}+x-1\right)y=-3x^{2}-2x+1
Combine all terms containing y.
\left(2x^{2}+x-1\right)y=1-2x-3x^{2}
The equation is in standard form.
\frac{\left(2x^{2}+x-1\right)y}{2x^{2}+x-1}=-\frac{\left(3x-1\right)\left(x+1\right)}{2x^{2}+x-1}
Divide both sides by 2x^{2}+x-1.
y=-\frac{\left(3x-1\right)\left(x+1\right)}{2x^{2}+x-1}
Dividing by 2x^{2}+x-1 undoes the multiplication by 2x^{2}+x-1.
y=-\frac{3x-1}{2x-1}
Divide -\left(1+x\right)\left(-1+3x\right) by 2x^{2}+x-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}