Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(2x\right)^{2}-y^{2}-\left(3x+2y\right)\left(3x-2y\right)
Consider \left(2x-y\right)\left(2x+y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}x^{2}-y^{2}-\left(3x+2y\right)\left(3x-2y\right)
Expand \left(2x\right)^{2}.
4x^{2}-y^{2}-\left(3x+2y\right)\left(3x-2y\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-y^{2}-\left(\left(3x\right)^{2}-\left(2y\right)^{2}\right)
Consider \left(3x+2y\right)\left(3x-2y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4x^{2}-y^{2}-\left(3^{2}x^{2}-\left(2y\right)^{2}\right)
Expand \left(3x\right)^{2}.
4x^{2}-y^{2}-\left(9x^{2}-\left(2y\right)^{2}\right)
Calculate 3 to the power of 2 and get 9.
4x^{2}-y^{2}-\left(9x^{2}-2^{2}y^{2}\right)
Expand \left(2y\right)^{2}.
4x^{2}-y^{2}-\left(9x^{2}-4y^{2}\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-y^{2}-9x^{2}-\left(-4y^{2}\right)
To find the opposite of 9x^{2}-4y^{2}, find the opposite of each term.
4x^{2}-y^{2}-9x^{2}+4y^{2}
The opposite of -4y^{2} is 4y^{2}.
-5x^{2}-y^{2}+4y^{2}
Combine 4x^{2} and -9x^{2} to get -5x^{2}.
-5x^{2}+3y^{2}
Combine -y^{2} and 4y^{2} to get 3y^{2}.
\left(2x\right)^{2}-y^{2}-\left(3x+2y\right)\left(3x-2y\right)
Consider \left(2x-y\right)\left(2x+y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}x^{2}-y^{2}-\left(3x+2y\right)\left(3x-2y\right)
Expand \left(2x\right)^{2}.
4x^{2}-y^{2}-\left(3x+2y\right)\left(3x-2y\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-y^{2}-\left(\left(3x\right)^{2}-\left(2y\right)^{2}\right)
Consider \left(3x+2y\right)\left(3x-2y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4x^{2}-y^{2}-\left(3^{2}x^{2}-\left(2y\right)^{2}\right)
Expand \left(3x\right)^{2}.
4x^{2}-y^{2}-\left(9x^{2}-\left(2y\right)^{2}\right)
Calculate 3 to the power of 2 and get 9.
4x^{2}-y^{2}-\left(9x^{2}-2^{2}y^{2}\right)
Expand \left(2y\right)^{2}.
4x^{2}-y^{2}-\left(9x^{2}-4y^{2}\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-y^{2}-9x^{2}-\left(-4y^{2}\right)
To find the opposite of 9x^{2}-4y^{2}, find the opposite of each term.
4x^{2}-y^{2}-9x^{2}+4y^{2}
The opposite of -4y^{2} is 4y^{2}.
-5x^{2}-y^{2}+4y^{2}
Combine 4x^{2} and -9x^{2} to get -5x^{2}.
-5x^{2}+3y^{2}
Combine -y^{2} and 4y^{2} to get 3y^{2}.