Solve for x
x = \frac{\sqrt{29} + 7}{2} \approx 6.192582404
x=\frac{7-\sqrt{29}}{2}\approx 0.807417596
Graph
Share
Copied to clipboard
2x^{2}-9x+10=\left(x-1\right)^{2}+4
Use the distributive property to multiply 2x-5 by x-2 and combine like terms.
2x^{2}-9x+10=x^{2}-2x+1+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
2x^{2}-9x+10=x^{2}-2x+5
Add 1 and 4 to get 5.
2x^{2}-9x+10-x^{2}=-2x+5
Subtract x^{2} from both sides.
x^{2}-9x+10=-2x+5
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-9x+10+2x=5
Add 2x to both sides.
x^{2}-7x+10=5
Combine -9x and 2x to get -7x.
x^{2}-7x+10-5=0
Subtract 5 from both sides.
x^{2}-7x+5=0
Subtract 5 from 10 to get 5.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 5}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -7 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 5}}{2}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49-20}}{2}
Multiply -4 times 5.
x=\frac{-\left(-7\right)±\sqrt{29}}{2}
Add 49 to -20.
x=\frac{7±\sqrt{29}}{2}
The opposite of -7 is 7.
x=\frac{\sqrt{29}+7}{2}
Now solve the equation x=\frac{7±\sqrt{29}}{2} when ± is plus. Add 7 to \sqrt{29}.
x=\frac{7-\sqrt{29}}{2}
Now solve the equation x=\frac{7±\sqrt{29}}{2} when ± is minus. Subtract \sqrt{29} from 7.
x=\frac{\sqrt{29}+7}{2} x=\frac{7-\sqrt{29}}{2}
The equation is now solved.
2x^{2}-9x+10=\left(x-1\right)^{2}+4
Use the distributive property to multiply 2x-5 by x-2 and combine like terms.
2x^{2}-9x+10=x^{2}-2x+1+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
2x^{2}-9x+10=x^{2}-2x+5
Add 1 and 4 to get 5.
2x^{2}-9x+10-x^{2}=-2x+5
Subtract x^{2} from both sides.
x^{2}-9x+10=-2x+5
Combine 2x^{2} and -x^{2} to get x^{2}.
x^{2}-9x+10+2x=5
Add 2x to both sides.
x^{2}-7x+10=5
Combine -9x and 2x to get -7x.
x^{2}-7x=5-10
Subtract 10 from both sides.
x^{2}-7x=-5
Subtract 10 from 5 to get -5.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-5+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=-5+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=\frac{29}{4}
Add -5 to \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{29}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{29}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{\sqrt{29}}{2} x-\frac{7}{2}=-\frac{\sqrt{29}}{2}
Simplify.
x=\frac{\sqrt{29}+7}{2} x=\frac{7-\sqrt{29}}{2}
Add \frac{7}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}