Solve for x
x = \frac{17}{6} = 2\frac{5}{6} \approx 2.833333333
Graph
Share
Copied to clipboard
\left(2x\right)^{2}-25=\left(2x-3\right)^{2}
Consider \left(2x-5\right)\left(2x+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
2^{2}x^{2}-25=\left(2x-3\right)^{2}
Expand \left(2x\right)^{2}.
4x^{2}-25=\left(2x-3\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x^{2}-25=4x^{2}-12x+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-25-4x^{2}=-12x+9
Subtract 4x^{2} from both sides.
-25=-12x+9
Combine 4x^{2} and -4x^{2} to get 0.
-12x+9=-25
Swap sides so that all variable terms are on the left hand side.
-12x=-25-9
Subtract 9 from both sides.
-12x=-34
Subtract 9 from -25 to get -34.
x=\frac{-34}{-12}
Divide both sides by -12.
x=\frac{17}{6}
Reduce the fraction \frac{-34}{-12} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}