Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x\right)^{2}-9=27
Consider \left(2x-3\right)\left(2x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
2^{2}x^{2}-9=27
Expand \left(2x\right)^{2}.
4x^{2}-9=27
Calculate 2 to the power of 2 and get 4.
4x^{2}=27+9
Add 9 to both sides.
4x^{2}=36
Add 27 and 9 to get 36.
x^{2}=\frac{36}{4}
Divide both sides by 4.
x^{2}=9
Divide 36 by 4 to get 9.
x=3 x=-3
Take the square root of both sides of the equation.
\left(2x\right)^{2}-9=27
Consider \left(2x-3\right)\left(2x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
2^{2}x^{2}-9=27
Expand \left(2x\right)^{2}.
4x^{2}-9=27
Calculate 2 to the power of 2 and get 4.
4x^{2}-9-27=0
Subtract 27 from both sides.
4x^{2}-36=0
Subtract 27 from -9 to get -36.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-36\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 4\left(-36\right)}}{2\times 4}
Square 0.
x=\frac{0±\sqrt{-16\left(-36\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{0±\sqrt{576}}{2\times 4}
Multiply -16 times -36.
x=\frac{0±24}{2\times 4}
Take the square root of 576.
x=\frac{0±24}{8}
Multiply 2 times 4.
x=3
Now solve the equation x=\frac{0±24}{8} when ± is plus. Divide 24 by 8.
x=-3
Now solve the equation x=\frac{0±24}{8} when ± is minus. Divide -24 by 8.
x=3 x=-3
The equation is now solved.