Solve for x
x=-8
x=3
Graph
Share
Copied to clipboard
2x^{2}+10x-12=36
Use the distributive property to multiply 2x-2 by x+6 and combine like terms.
2x^{2}+10x-12-36=0
Subtract 36 from both sides.
2x^{2}+10x-48=0
Subtract 36 from -12 to get -48.
x=\frac{-10±\sqrt{10^{2}-4\times 2\left(-48\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 10 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 2\left(-48\right)}}{2\times 2}
Square 10.
x=\frac{-10±\sqrt{100-8\left(-48\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-10±\sqrt{100+384}}{2\times 2}
Multiply -8 times -48.
x=\frac{-10±\sqrt{484}}{2\times 2}
Add 100 to 384.
x=\frac{-10±22}{2\times 2}
Take the square root of 484.
x=\frac{-10±22}{4}
Multiply 2 times 2.
x=\frac{12}{4}
Now solve the equation x=\frac{-10±22}{4} when ± is plus. Add -10 to 22.
x=3
Divide 12 by 4.
x=-\frac{32}{4}
Now solve the equation x=\frac{-10±22}{4} when ± is minus. Subtract 22 from -10.
x=-8
Divide -32 by 4.
x=3 x=-8
The equation is now solved.
2x^{2}+10x-12=36
Use the distributive property to multiply 2x-2 by x+6 and combine like terms.
2x^{2}+10x=36+12
Add 12 to both sides.
2x^{2}+10x=48
Add 36 and 12 to get 48.
\frac{2x^{2}+10x}{2}=\frac{48}{2}
Divide both sides by 2.
x^{2}+\frac{10}{2}x=\frac{48}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+5x=\frac{48}{2}
Divide 10 by 2.
x^{2}+5x=24
Divide 48 by 2.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=24+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=24+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{121}{4}
Add 24 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{121}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{11}{2} x+\frac{5}{2}=-\frac{11}{2}
Simplify.
x=3 x=-8
Subtract \frac{5}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}