Solve for x
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
\left(2x\right)^{2}-1-\left(4x-3\right)=4x\left(x-2\right)
Consider \left(2x-1\right)\left(2x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
2^{2}x^{2}-1-\left(4x-3\right)=4x\left(x-2\right)
Expand \left(2x\right)^{2}.
4x^{2}-1-\left(4x-3\right)=4x\left(x-2\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-1-4x+3=4x\left(x-2\right)
To find the opposite of 4x-3, find the opposite of each term.
4x^{2}+2-4x=4x\left(x-2\right)
Add -1 and 3 to get 2.
4x^{2}+2-4x=4x^{2}-8x
Use the distributive property to multiply 4x by x-2.
4x^{2}+2-4x-4x^{2}=-8x
Subtract 4x^{2} from both sides.
2-4x=-8x
Combine 4x^{2} and -4x^{2} to get 0.
2-4x+8x=0
Add 8x to both sides.
2+4x=0
Combine -4x and 8x to get 4x.
4x=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-2}{4}
Divide both sides by 4.
x=-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}