Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
\left(2x\right)^{2}-1=12x-10
Consider \left(2x-1\right)\left(2x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
2^{2}x^{2}-1=12x-10
Expand \left(2x\right)^{2}.
4x^{2}-1=12x-10
Calculate 2 to the power of 2 and get 4.
4x^{2}-1-12x=-10
Subtract 12x from both sides.
4x^{2}-1-12x+10=0
Add 10 to both sides.
4x^{2}+9-12x=0
Add -1 and 10 to get 9.
4x^{2}-12x+9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 9}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -12 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 9}}{2\times 4}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\times 9}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 4}
Multiply -16 times 9.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 4}
Add 144 to -144.
x=-\frac{-12}{2\times 4}
Take the square root of 0.
x=\frac{12}{2\times 4}
The opposite of -12 is 12.
x=\frac{12}{8}
Multiply 2 times 4.
x=\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
\left(2x\right)^{2}-1=12x-10
Consider \left(2x-1\right)\left(2x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
2^{2}x^{2}-1=12x-10
Expand \left(2x\right)^{2}.
4x^{2}-1=12x-10
Calculate 2 to the power of 2 and get 4.
4x^{2}-1-12x=-10
Subtract 12x from both sides.
4x^{2}-12x=-10+1
Add 1 to both sides.
4x^{2}-12x=-9
Add -10 and 1 to get -9.
\frac{4x^{2}-12x}{4}=-\frac{9}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{12}{4}\right)x=-\frac{9}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-3x=-\frac{9}{4}
Divide -12 by 4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-\frac{9}{4}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=\frac{-9+9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=0
Add -\frac{9}{4} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=0
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{3}{2}=0 x-\frac{3}{2}=0
Simplify.
x=\frac{3}{2} x=\frac{3}{2}
Add \frac{3}{2} to both sides of the equation.
x=\frac{3}{2}
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}