Evaluate
\frac{4x^{2}}{5}-\frac{5y^{2}}{4}
Expand
\frac{4x^{2}}{5}-\frac{5y^{2}}{4}
Share
Copied to clipboard
2x\times \frac{2}{5}x+2x\times \frac{1}{2}y-\frac{5}{2}y\times \frac{2}{5}x-\frac{5}{2}y\times \frac{1}{2}y
Apply the distributive property by multiplying each term of 2x-\frac{5}{2}y by each term of \frac{2}{5}x+\frac{1}{2}y.
2x^{2}\times \frac{2}{5}+2x\times \frac{1}{2}y-\frac{5}{2}y\times \frac{2}{5}x-\frac{5}{2}y\times \frac{1}{2}y
Multiply x and x to get x^{2}.
2x^{2}\times \frac{2}{5}+2x\times \frac{1}{2}y-\frac{5}{2}y\times \frac{2}{5}x-\frac{5}{2}y^{2}\times \frac{1}{2}
Multiply y and y to get y^{2}.
\frac{2\times 2}{5}x^{2}+2x\times \frac{1}{2}y-\frac{5}{2}y\times \frac{2}{5}x-\frac{5}{2}y^{2}\times \frac{1}{2}
Express 2\times \frac{2}{5} as a single fraction.
\frac{4}{5}x^{2}+2x\times \frac{1}{2}y-\frac{5}{2}y\times \frac{2}{5}x-\frac{5}{2}y^{2}\times \frac{1}{2}
Multiply 2 and 2 to get 4.
\frac{4}{5}x^{2}+xy-\frac{5}{2}y\times \frac{2}{5}x-\frac{5}{2}y^{2}\times \frac{1}{2}
Cancel out 2 and 2.
\frac{4}{5}x^{2}+xy+\frac{-5\times 2}{2\times 5}yx-\frac{5}{2}y^{2}\times \frac{1}{2}
Multiply -\frac{5}{2} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{5}x^{2}+xy+\frac{-5}{5}yx-\frac{5}{2}y^{2}\times \frac{1}{2}
Cancel out 2 in both numerator and denominator.
\frac{4}{5}x^{2}+xy-yx-\frac{5}{2}y^{2}\times \frac{1}{2}
Divide -5 by 5 to get -1.
\frac{4}{5}x^{2}-\frac{5}{2}y^{2}\times \frac{1}{2}
Combine xy and -yx to get 0.
\frac{4}{5}x^{2}+\frac{-5}{2\times 2}y^{2}
Multiply -\frac{5}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{5}x^{2}+\frac{-5}{4}y^{2}
Do the multiplications in the fraction \frac{-5}{2\times 2}.
\frac{4}{5}x^{2}-\frac{5}{4}y^{2}
Fraction \frac{-5}{4} can be rewritten as -\frac{5}{4} by extracting the negative sign.
2x\times \frac{2}{5}x+2x\times \frac{1}{2}y-\frac{5}{2}y\times \frac{2}{5}x-\frac{5}{2}y\times \frac{1}{2}y
Apply the distributive property by multiplying each term of 2x-\frac{5}{2}y by each term of \frac{2}{5}x+\frac{1}{2}y.
2x^{2}\times \frac{2}{5}+2x\times \frac{1}{2}y-\frac{5}{2}y\times \frac{2}{5}x-\frac{5}{2}y\times \frac{1}{2}y
Multiply x and x to get x^{2}.
2x^{2}\times \frac{2}{5}+2x\times \frac{1}{2}y-\frac{5}{2}y\times \frac{2}{5}x-\frac{5}{2}y^{2}\times \frac{1}{2}
Multiply y and y to get y^{2}.
\frac{2\times 2}{5}x^{2}+2x\times \frac{1}{2}y-\frac{5}{2}y\times \frac{2}{5}x-\frac{5}{2}y^{2}\times \frac{1}{2}
Express 2\times \frac{2}{5} as a single fraction.
\frac{4}{5}x^{2}+2x\times \frac{1}{2}y-\frac{5}{2}y\times \frac{2}{5}x-\frac{5}{2}y^{2}\times \frac{1}{2}
Multiply 2 and 2 to get 4.
\frac{4}{5}x^{2}+xy-\frac{5}{2}y\times \frac{2}{5}x-\frac{5}{2}y^{2}\times \frac{1}{2}
Cancel out 2 and 2.
\frac{4}{5}x^{2}+xy+\frac{-5\times 2}{2\times 5}yx-\frac{5}{2}y^{2}\times \frac{1}{2}
Multiply -\frac{5}{2} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{5}x^{2}+xy+\frac{-5}{5}yx-\frac{5}{2}y^{2}\times \frac{1}{2}
Cancel out 2 in both numerator and denominator.
\frac{4}{5}x^{2}+xy-yx-\frac{5}{2}y^{2}\times \frac{1}{2}
Divide -5 by 5 to get -1.
\frac{4}{5}x^{2}-\frac{5}{2}y^{2}\times \frac{1}{2}
Combine xy and -yx to get 0.
\frac{4}{5}x^{2}+\frac{-5}{2\times 2}y^{2}
Multiply -\frac{5}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{5}x^{2}+\frac{-5}{4}y^{2}
Do the multiplications in the fraction \frac{-5}{2\times 2}.
\frac{4}{5}x^{2}-\frac{5}{4}y^{2}
Fraction \frac{-5}{4} can be rewritten as -\frac{5}{4} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}