Solve for x
x=\frac{\sqrt{409}-11}{12}\approx 0.768645701
x=\frac{-\sqrt{409}-11}{12}\approx -2.601979035
Graph
Share
Copied to clipboard
\left(6x+12\right)x-12=x
Use the distributive property to multiply 2x+4 by 3.
6x^{2}+12x-12=x
Use the distributive property to multiply 6x+12 by x.
6x^{2}+12x-12-x=0
Subtract x from both sides.
6x^{2}+11x-12=0
Combine 12x and -x to get 11x.
x=\frac{-11±\sqrt{11^{2}-4\times 6\left(-12\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 11 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\times 6\left(-12\right)}}{2\times 6}
Square 11.
x=\frac{-11±\sqrt{121-24\left(-12\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-11±\sqrt{121+288}}{2\times 6}
Multiply -24 times -12.
x=\frac{-11±\sqrt{409}}{2\times 6}
Add 121 to 288.
x=\frac{-11±\sqrt{409}}{12}
Multiply 2 times 6.
x=\frac{\sqrt{409}-11}{12}
Now solve the equation x=\frac{-11±\sqrt{409}}{12} when ± is plus. Add -11 to \sqrt{409}.
x=\frac{-\sqrt{409}-11}{12}
Now solve the equation x=\frac{-11±\sqrt{409}}{12} when ± is minus. Subtract \sqrt{409} from -11.
x=\frac{\sqrt{409}-11}{12} x=\frac{-\sqrt{409}-11}{12}
The equation is now solved.
\left(6x+12\right)x-12=x
Use the distributive property to multiply 2x+4 by 3.
6x^{2}+12x-12=x
Use the distributive property to multiply 6x+12 by x.
6x^{2}+12x-12-x=0
Subtract x from both sides.
6x^{2}+11x-12=0
Combine 12x and -x to get 11x.
6x^{2}+11x=12
Add 12 to both sides. Anything plus zero gives itself.
\frac{6x^{2}+11x}{6}=\frac{12}{6}
Divide both sides by 6.
x^{2}+\frac{11}{6}x=\frac{12}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\frac{11}{6}x=2
Divide 12 by 6.
x^{2}+\frac{11}{6}x+\left(\frac{11}{12}\right)^{2}=2+\left(\frac{11}{12}\right)^{2}
Divide \frac{11}{6}, the coefficient of the x term, by 2 to get \frac{11}{12}. Then add the square of \frac{11}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{11}{6}x+\frac{121}{144}=2+\frac{121}{144}
Square \frac{11}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{11}{6}x+\frac{121}{144}=\frac{409}{144}
Add 2 to \frac{121}{144}.
\left(x+\frac{11}{12}\right)^{2}=\frac{409}{144}
Factor x^{2}+\frac{11}{6}x+\frac{121}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{12}\right)^{2}}=\sqrt{\frac{409}{144}}
Take the square root of both sides of the equation.
x+\frac{11}{12}=\frac{\sqrt{409}}{12} x+\frac{11}{12}=-\frac{\sqrt{409}}{12}
Simplify.
x=\frac{\sqrt{409}-11}{12} x=\frac{-\sqrt{409}-11}{12}
Subtract \frac{11}{12} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}