Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}+13x+15=41
Use the distributive property to multiply 2x+3 by x+5 and combine like terms.
2x^{2}+13x+15-41=0
Subtract 41 from both sides.
2x^{2}+13x-26=0
Subtract 41 from 15 to get -26.
x=\frac{-13±\sqrt{13^{2}-4\times 2\left(-26\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 13 for b, and -26 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\times 2\left(-26\right)}}{2\times 2}
Square 13.
x=\frac{-13±\sqrt{169-8\left(-26\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-13±\sqrt{169+208}}{2\times 2}
Multiply -8 times -26.
x=\frac{-13±\sqrt{377}}{2\times 2}
Add 169 to 208.
x=\frac{-13±\sqrt{377}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{377}-13}{4}
Now solve the equation x=\frac{-13±\sqrt{377}}{4} when ± is plus. Add -13 to \sqrt{377}.
x=\frac{-\sqrt{377}-13}{4}
Now solve the equation x=\frac{-13±\sqrt{377}}{4} when ± is minus. Subtract \sqrt{377} from -13.
x=\frac{\sqrt{377}-13}{4} x=\frac{-\sqrt{377}-13}{4}
The equation is now solved.
2x^{2}+13x+15=41
Use the distributive property to multiply 2x+3 by x+5 and combine like terms.
2x^{2}+13x=41-15
Subtract 15 from both sides.
2x^{2}+13x=26
Subtract 15 from 41 to get 26.
\frac{2x^{2}+13x}{2}=\frac{26}{2}
Divide both sides by 2.
x^{2}+\frac{13}{2}x=\frac{26}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{13}{2}x=13
Divide 26 by 2.
x^{2}+\frac{13}{2}x+\left(\frac{13}{4}\right)^{2}=13+\left(\frac{13}{4}\right)^{2}
Divide \frac{13}{2}, the coefficient of the x term, by 2 to get \frac{13}{4}. Then add the square of \frac{13}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{13}{2}x+\frac{169}{16}=13+\frac{169}{16}
Square \frac{13}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{13}{2}x+\frac{169}{16}=\frac{377}{16}
Add 13 to \frac{169}{16}.
\left(x+\frac{13}{4}\right)^{2}=\frac{377}{16}
Factor x^{2}+\frac{13}{2}x+\frac{169}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{4}\right)^{2}}=\sqrt{\frac{377}{16}}
Take the square root of both sides of the equation.
x+\frac{13}{4}=\frac{\sqrt{377}}{4} x+\frac{13}{4}=-\frac{\sqrt{377}}{4}
Simplify.
x=\frac{\sqrt{377}-13}{4} x=\frac{-\sqrt{377}-13}{4}
Subtract \frac{13}{4} from both sides of the equation.