Solve for x
x = \frac{\sqrt{377} - 13}{4} \approx 1.60412196
x=\frac{-\sqrt{377}-13}{4}\approx -8.10412196
Graph
Share
Copied to clipboard
2x^{2}+13x+15=41
Use the distributive property to multiply 2x+3 by x+5 and combine like terms.
2x^{2}+13x+15-41=0
Subtract 41 from both sides.
2x^{2}+13x-26=0
Subtract 41 from 15 to get -26.
x=\frac{-13±\sqrt{13^{2}-4\times 2\left(-26\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 13 for b, and -26 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\times 2\left(-26\right)}}{2\times 2}
Square 13.
x=\frac{-13±\sqrt{169-8\left(-26\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-13±\sqrt{169+208}}{2\times 2}
Multiply -8 times -26.
x=\frac{-13±\sqrt{377}}{2\times 2}
Add 169 to 208.
x=\frac{-13±\sqrt{377}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{377}-13}{4}
Now solve the equation x=\frac{-13±\sqrt{377}}{4} when ± is plus. Add -13 to \sqrt{377}.
x=\frac{-\sqrt{377}-13}{4}
Now solve the equation x=\frac{-13±\sqrt{377}}{4} when ± is minus. Subtract \sqrt{377} from -13.
x=\frac{\sqrt{377}-13}{4} x=\frac{-\sqrt{377}-13}{4}
The equation is now solved.
2x^{2}+13x+15=41
Use the distributive property to multiply 2x+3 by x+5 and combine like terms.
2x^{2}+13x=41-15
Subtract 15 from both sides.
2x^{2}+13x=26
Subtract 15 from 41 to get 26.
\frac{2x^{2}+13x}{2}=\frac{26}{2}
Divide both sides by 2.
x^{2}+\frac{13}{2}x=\frac{26}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{13}{2}x=13
Divide 26 by 2.
x^{2}+\frac{13}{2}x+\left(\frac{13}{4}\right)^{2}=13+\left(\frac{13}{4}\right)^{2}
Divide \frac{13}{2}, the coefficient of the x term, by 2 to get \frac{13}{4}. Then add the square of \frac{13}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{13}{2}x+\frac{169}{16}=13+\frac{169}{16}
Square \frac{13}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{13}{2}x+\frac{169}{16}=\frac{377}{16}
Add 13 to \frac{169}{16}.
\left(x+\frac{13}{4}\right)^{2}=\frac{377}{16}
Factor x^{2}+\frac{13}{2}x+\frac{169}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{4}\right)^{2}}=\sqrt{\frac{377}{16}}
Take the square root of both sides of the equation.
x+\frac{13}{4}=\frac{\sqrt{377}}{4} x+\frac{13}{4}=-\frac{\sqrt{377}}{4}
Simplify.
x=\frac{\sqrt{377}-13}{4} x=\frac{-\sqrt{377}-13}{4}
Subtract \frac{13}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}