Evaluate
x^{3}+x^{2}+\frac{x}{2}+\frac{1}{4}
Expand
x^{3}+x^{2}+\frac{x}{2}+\frac{1}{4}
Graph
Share
Copied to clipboard
\left(2x+1\right)\left(\frac{2x^{2}}{4}+\frac{x}{4}+\frac{1}{8}\right)+\frac{1}{8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4 is 4. Multiply \frac{x^{2}}{2} times \frac{2}{2}.
\left(2x+1\right)\left(\frac{2x^{2}+x}{4}+\frac{1}{8}\right)+\frac{1}{8}
Since \frac{2x^{2}}{4} and \frac{x}{4} have the same denominator, add them by adding their numerators.
\left(2x+1\right)\left(\frac{2\left(2x^{2}+x\right)}{8}+\frac{1}{8}\right)+\frac{1}{8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 8 is 8. Multiply \frac{2x^{2}+x}{4} times \frac{2}{2}.
\left(2x+1\right)\times \frac{2\left(2x^{2}+x\right)+1}{8}+\frac{1}{8}
Since \frac{2\left(2x^{2}+x\right)}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
\left(2x+1\right)\times \frac{4x^{2}+2x+1}{8}+\frac{1}{8}
Do the multiplications in 2\left(2x^{2}+x\right)+1.
\frac{\left(2x+1\right)\left(4x^{2}+2x+1\right)}{8}+\frac{1}{8}
Express \left(2x+1\right)\times \frac{4x^{2}+2x+1}{8} as a single fraction.
\frac{\left(2x+1\right)\left(4x^{2}+2x+1\right)+1}{8}
Since \frac{\left(2x+1\right)\left(4x^{2}+2x+1\right)}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
\frac{8x^{3}+4x^{2}+2x+4x^{2}+2x+1+1}{8}
Do the multiplications in \left(2x+1\right)\left(4x^{2}+2x+1\right)+1.
\frac{8x^{3}+8x^{2}+4x+2}{8}
Combine like terms in 8x^{3}+4x^{2}+2x+4x^{2}+2x+1+1.
\left(2x+1\right)\left(\frac{2x^{2}}{4}+\frac{x}{4}+\frac{1}{8}\right)+\frac{1}{8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 4 is 4. Multiply \frac{x^{2}}{2} times \frac{2}{2}.
\left(2x+1\right)\left(\frac{2x^{2}+x}{4}+\frac{1}{8}\right)+\frac{1}{8}
Since \frac{2x^{2}}{4} and \frac{x}{4} have the same denominator, add them by adding their numerators.
\left(2x+1\right)\left(\frac{2\left(2x^{2}+x\right)}{8}+\frac{1}{8}\right)+\frac{1}{8}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 8 is 8. Multiply \frac{2x^{2}+x}{4} times \frac{2}{2}.
\left(2x+1\right)\times \frac{2\left(2x^{2}+x\right)+1}{8}+\frac{1}{8}
Since \frac{2\left(2x^{2}+x\right)}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
\left(2x+1\right)\times \frac{4x^{2}+2x+1}{8}+\frac{1}{8}
Do the multiplications in 2\left(2x^{2}+x\right)+1.
\frac{\left(2x+1\right)\left(4x^{2}+2x+1\right)}{8}+\frac{1}{8}
Express \left(2x+1\right)\times \frac{4x^{2}+2x+1}{8} as a single fraction.
\frac{\left(2x+1\right)\left(4x^{2}+2x+1\right)+1}{8}
Since \frac{\left(2x+1\right)\left(4x^{2}+2x+1\right)}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
\frac{8x^{3}+4x^{2}+2x+4x^{2}+2x+1+1}{8}
Do the multiplications in \left(2x+1\right)\left(4x^{2}+2x+1\right)+1.
\frac{8x^{3}+8x^{2}+4x+2}{8}
Combine like terms in 8x^{3}+4x^{2}+2x+4x^{2}+2x+1+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}