Solve for x
x=-\frac{71}{150}\approx -0.473333333
Graph
Share
Copied to clipboard
2x+1=\frac{\frac{4}{5}}{15}
Divide both sides by 15.
2x+1=\frac{4}{5\times 15}
Express \frac{\frac{4}{5}}{15} as a single fraction.
2x+1=\frac{4}{75}
Multiply 5 and 15 to get 75.
2x=\frac{4}{75}-1
Subtract 1 from both sides.
2x=\frac{4}{75}-\frac{75}{75}
Convert 1 to fraction \frac{75}{75}.
2x=\frac{4-75}{75}
Since \frac{4}{75} and \frac{75}{75} have the same denominator, subtract them by subtracting their numerators.
2x=-\frac{71}{75}
Subtract 75 from 4 to get -71.
x=\frac{-\frac{71}{75}}{2}
Divide both sides by 2.
x=\frac{-71}{75\times 2}
Express \frac{-\frac{71}{75}}{2} as a single fraction.
x=\frac{-71}{150}
Multiply 75 and 2 to get 150.
x=-\frac{71}{150}
Fraction \frac{-71}{150} can be rewritten as -\frac{71}{150} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}