Evaluate
1+5x-x^{2}
Factor
-\left(x-\frac{5-\sqrt{29}}{2}\right)\left(x-\frac{\sqrt{29}+5}{2}\right)
Graph
Share
Copied to clipboard
2x+3x+1-x^{2}
Multiply 1 and 3 to get 3.
5x+1-x^{2}
Combine 2x and 3x to get 5x.
factor(2x+3x+1-x^{2})
Multiply 1 and 3 to get 3.
factor(5x+1-x^{2})
Combine 2x and 3x to get 5x.
-x^{2}+5x+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{25-4\left(-1\right)}}{2\left(-1\right)}
Square 5.
x=\frac{-5±\sqrt{25+4}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-5±\sqrt{29}}{2\left(-1\right)}
Add 25 to 4.
x=\frac{-5±\sqrt{29}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{29}-5}{-2}
Now solve the equation x=\frac{-5±\sqrt{29}}{-2} when ± is plus. Add -5 to \sqrt{29}.
x=\frac{5-\sqrt{29}}{2}
Divide -5+\sqrt{29} by -2.
x=\frac{-\sqrt{29}-5}{-2}
Now solve the equation x=\frac{-5±\sqrt{29}}{-2} when ± is minus. Subtract \sqrt{29} from -5.
x=\frac{\sqrt{29}+5}{2}
Divide -5-\sqrt{29} by -2.
-x^{2}+5x+1=-\left(x-\frac{5-\sqrt{29}}{2}\right)\left(x-\frac{\sqrt{29}+5}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5-\sqrt{29}}{2} for x_{1} and \frac{5+\sqrt{29}}{2} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}